ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqnn Unicode version

Theorem dvdsprmpweqnn 12601
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 9686 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
2 dvdsprmpweq 12600 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
31, 2syl3an2 1283 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^
n ) ) )
43imp 124 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN0  A  =  ( P ^ n ) )
5 df-n0 9295 . . . . . 6  |-  NN0  =  ( NN  u.  { 0 } )
65rexeqi 2706 . . . . 5  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  E. n  e.  ( NN  u.  {
0 } ) A  =  ( P ^
n ) )
7 rexun 3352 . . . . 5  |-  ( E. n  e.  ( NN  u.  { 0 } ) A  =  ( P ^ n )  <-> 
( E. n  e.  NN  A  =  ( P ^ n )  \/  E. n  e. 
{ 0 } A  =  ( P ^
n ) ) )
86, 7bitri 184 . . . 4  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  ( E. n  e.  NN  A  =  ( P ^
n )  \/  E. n  e.  { 0 } A  =  ( P ^ n ) ) )
9 0z 9382 . . . . . . 7  |-  0  e.  ZZ
10 oveq2 5951 . . . . . . . . 9  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1110eqeq2d 2216 . . . . . . . 8  |-  ( n  =  0  ->  ( A  =  ( P ^ n )  <->  A  =  ( P ^ 0 ) ) )
1211rexsng 3673 . . . . . . 7  |-  ( 0  e.  ZZ  ->  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) ) )
139, 12ax-mp 5 . . . . . 6  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) )
14 prmnn 12374 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
1514nncnd 9049 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  CC )
1615exp0d 10810 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
17163ad2ant1 1020 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( P ^
0 )  =  1 )
1817eqeq2d 2216 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  <->  A  =  1
) )
19 eluz2b3 9724 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
20 eqneqall 2385 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( A  =/=  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2120com12 30 . . . . . . . . . . 11  |-  ( A  =/=  1  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2219, 21simplbiim 387 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
23223ad2ant2 1021 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  1  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2418, 23sylbid 150 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2524com12 30 . . . . . . 7  |-  ( A  =  ( P ^
0 )  ->  (
( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2625impd 254 . . . . . 6  |-  ( A  =  ( P ^
0 )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2713, 26sylbi 121 . . . . 5  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  ->  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2827jao1i 797 . . . 4  |-  ( ( E. n  e.  NN  A  =  ( P ^ n )  \/ 
E. n  e.  {
0 } A  =  ( P ^ n
) )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
298, 28sylbi 121 . . 3  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
304, 29mpcom 36 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN  A  =  ( P ^ n ) )
3130ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1372    e. wcel 2175    =/= wne 2375   E.wrex 2484    u. cun 3163   {csn 3632   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   0cc0 7924   1c1 7925   NNcn 9035   2c2 9086   NN0cn0 9294   ZZcz 9371   ZZ>=cuz 9647   ^cexp 10681    || cdvds 12040   Primecprime 12371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-1o 6501  df-2o 6502  df-er 6619  df-en 6827  df-sup 7085  df-inf 7086  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-xnn0 9358  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-fl 10411  df-mod 10466  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252  df-dvds 12041  df-gcd 12217  df-prm 12372  df-pc 12550
This theorem is referenced by:  difsqpwdvds  12603
  Copyright terms: Public domain W3C validator