ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqnn Unicode version

Theorem dvdsprmpweqnn 12289
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 9525 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
2 dvdsprmpweq 12288 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
31, 2syl3an2 1267 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^
n ) ) )
43imp 123 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN0  A  =  ( P ^ n ) )
5 df-n0 9136 . . . . . 6  |-  NN0  =  ( NN  u.  { 0 } )
65rexeqi 2670 . . . . 5  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  E. n  e.  ( NN  u.  {
0 } ) A  =  ( P ^
n ) )
7 rexun 3307 . . . . 5  |-  ( E. n  e.  ( NN  u.  { 0 } ) A  =  ( P ^ n )  <-> 
( E. n  e.  NN  A  =  ( P ^ n )  \/  E. n  e. 
{ 0 } A  =  ( P ^
n ) ) )
86, 7bitri 183 . . . 4  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  ( E. n  e.  NN  A  =  ( P ^
n )  \/  E. n  e.  { 0 } A  =  ( P ^ n ) ) )
9 0z 9223 . . . . . . 7  |-  0  e.  ZZ
10 oveq2 5861 . . . . . . . . 9  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1110eqeq2d 2182 . . . . . . . 8  |-  ( n  =  0  ->  ( A  =  ( P ^ n )  <->  A  =  ( P ^ 0 ) ) )
1211rexsng 3624 . . . . . . 7  |-  ( 0  e.  ZZ  ->  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) ) )
139, 12ax-mp 5 . . . . . 6  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) )
14 prmnn 12064 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
1514nncnd 8892 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  CC )
1615exp0d 10603 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
17163ad2ant1 1013 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( P ^
0 )  =  1 )
1817eqeq2d 2182 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  <->  A  =  1
) )
19 eluz2b3 9563 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
20 eqneqall 2350 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( A  =/=  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2120com12 30 . . . . . . . . . . 11  |-  ( A  =/=  1  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2219, 21simplbiim 385 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
23223ad2ant2 1014 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  1  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2418, 23sylbid 149 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2524com12 30 . . . . . . 7  |-  ( A  =  ( P ^
0 )  ->  (
( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2625impd 252 . . . . . 6  |-  ( A  =  ( P ^
0 )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2713, 26sylbi 120 . . . . 5  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  ->  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2827jao1i 791 . . . 4  |-  ( ( E. n  e.  NN  A  =  ( P ^ n )  \/ 
E. n  e.  {
0 } A  =  ( P ^ n
) )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
298, 28sylbi 120 . . 3  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
304, 29mpcom 36 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN  A  =  ( P ^ n ) )
3130ex 114 1  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   E.wrex 2449    u. cun 3119   {csn 3583   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774   1c1 7775   NNcn 8878   2c2 8929   NN0cn0 9135   ZZcz 9212   ZZ>=cuz 9487   ^cexp 10475    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by:  difsqpwdvds  12291
  Copyright terms: Public domain W3C validator