ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqnn Unicode version

Theorem dvdsprmpweqnn 12734
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 9707 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
2 dvdsprmpweq 12733 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
31, 2syl3an2 1284 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^
n ) ) )
43imp 124 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN0  A  =  ( P ^ n ) )
5 df-n0 9316 . . . . . 6  |-  NN0  =  ( NN  u.  { 0 } )
65rexeqi 2708 . . . . 5  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  E. n  e.  ( NN  u.  {
0 } ) A  =  ( P ^
n ) )
7 rexun 3357 . . . . 5  |-  ( E. n  e.  ( NN  u.  { 0 } ) A  =  ( P ^ n )  <-> 
( E. n  e.  NN  A  =  ( P ^ n )  \/  E. n  e. 
{ 0 } A  =  ( P ^
n ) ) )
86, 7bitri 184 . . . 4  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  ( E. n  e.  NN  A  =  ( P ^
n )  \/  E. n  e.  { 0 } A  =  ( P ^ n ) ) )
9 0z 9403 . . . . . . 7  |-  0  e.  ZZ
10 oveq2 5965 . . . . . . . . 9  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1110eqeq2d 2218 . . . . . . . 8  |-  ( n  =  0  ->  ( A  =  ( P ^ n )  <->  A  =  ( P ^ 0 ) ) )
1211rexsng 3679 . . . . . . 7  |-  ( 0  e.  ZZ  ->  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) ) )
139, 12ax-mp 5 . . . . . 6  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) )
14 prmnn 12507 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
1514nncnd 9070 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  CC )
1615exp0d 10834 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
17163ad2ant1 1021 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( P ^
0 )  =  1 )
1817eqeq2d 2218 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  <->  A  =  1
) )
19 eluz2b3 9745 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
20 eqneqall 2387 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( A  =/=  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2120com12 30 . . . . . . . . . . 11  |-  ( A  =/=  1  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2219, 21simplbiim 387 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
23223ad2ant2 1022 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  1  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2418, 23sylbid 150 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2524com12 30 . . . . . . 7  |-  ( A  =  ( P ^
0 )  ->  (
( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2625impd 254 . . . . . 6  |-  ( A  =  ( P ^
0 )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2713, 26sylbi 121 . . . . 5  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  ->  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2827jao1i 798 . . . 4  |-  ( ( E. n  e.  NN  A  =  ( P ^ n )  \/ 
E. n  e.  {
0 } A  =  ( P ^ n
) )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
298, 28sylbi 121 . . 3  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
304, 29mpcom 36 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN  A  =  ( P ^ n ) )
3130ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177    =/= wne 2377   E.wrex 2486    u. cun 3168   {csn 3638   class class class wbr 4051   ` cfv 5280  (class class class)co 5957   0cc0 7945   1c1 7946   NNcn 9056   2c2 9107   NN0cn0 9315   ZZcz 9392   ZZ>=cuz 9668   ^cexp 10705    || cdvds 12173   Primecprime 12504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-er 6633  df-en 6841  df-sup 7101  df-inf 7102  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-xnn0 9379  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-fz 10151  df-fzo 10285  df-fl 10435  df-mod 10490  df-seqfrec 10615  df-exp 10706  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-dvds 12174  df-gcd 12350  df-prm 12505  df-pc 12683
This theorem is referenced by:  difsqpwdvds  12736
  Copyright terms: Public domain W3C validator