ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqnn Unicode version

Theorem dvdsprmpweqnn 12477
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 9634 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
2 dvdsprmpweq 12476 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
31, 2syl3an2 1283 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^
n ) ) )
43imp 124 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN0  A  =  ( P ^ n ) )
5 df-n0 9244 . . . . . 6  |-  NN0  =  ( NN  u.  { 0 } )
65rexeqi 2695 . . . . 5  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  E. n  e.  ( NN  u.  {
0 } ) A  =  ( P ^
n ) )
7 rexun 3340 . . . . 5  |-  ( E. n  e.  ( NN  u.  { 0 } ) A  =  ( P ^ n )  <-> 
( E. n  e.  NN  A  =  ( P ^ n )  \/  E. n  e. 
{ 0 } A  =  ( P ^
n ) ) )
86, 7bitri 184 . . . 4  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  ( E. n  e.  NN  A  =  ( P ^
n )  \/  E. n  e.  { 0 } A  =  ( P ^ n ) ) )
9 0z 9331 . . . . . . 7  |-  0  e.  ZZ
10 oveq2 5927 . . . . . . . . 9  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1110eqeq2d 2205 . . . . . . . 8  |-  ( n  =  0  ->  ( A  =  ( P ^ n )  <->  A  =  ( P ^ 0 ) ) )
1211rexsng 3660 . . . . . . 7  |-  ( 0  e.  ZZ  ->  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) ) )
139, 12ax-mp 5 . . . . . 6  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) )
14 prmnn 12251 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
1514nncnd 8998 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  CC )
1615exp0d 10741 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
17163ad2ant1 1020 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( P ^
0 )  =  1 )
1817eqeq2d 2205 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  <->  A  =  1
) )
19 eluz2b3 9672 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
20 eqneqall 2374 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( A  =/=  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2120com12 30 . . . . . . . . . . 11  |-  ( A  =/=  1  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2219, 21simplbiim 387 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
23223ad2ant2 1021 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  1  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2418, 23sylbid 150 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2524com12 30 . . . . . . 7  |-  ( A  =  ( P ^
0 )  ->  (
( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2625impd 254 . . . . . 6  |-  ( A  =  ( P ^
0 )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2713, 26sylbi 121 . . . . 5  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  ->  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2827jao1i 797 . . . 4  |-  ( ( E. n  e.  NN  A  =  ( P ^ n )  \/ 
E. n  e.  {
0 } A  =  ( P ^ n
) )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
298, 28sylbi 121 . . 3  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
304, 29mpcom 36 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN  A  =  ( P ^ n ) )
3130ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164    =/= wne 2364   E.wrex 2473    u. cun 3152   {csn 3619   class class class wbr 4030   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875   NNcn 8984   2c2 9035   NN0cn0 9243   ZZcz 9320   ZZ>=cuz 9595   ^cexp 10612    || cdvds 11933   Primecprime 12248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992  ax-arch 7993  ax-caucvg 7994
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-er 6589  df-en 6797  df-sup 7045  df-inf 7046  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-n0 9244  df-xnn0 9307  df-z 9321  df-uz 9596  df-q 9688  df-rp 9723  df-fz 10078  df-fzo 10212  df-fl 10342  df-mod 10397  df-seqfrec 10522  df-exp 10613  df-cj 10989  df-re 10990  df-im 10991  df-rsqrt 11145  df-abs 11146  df-dvds 11934  df-gcd 12083  df-prm 12249  df-pc 12426
This theorem is referenced by:  difsqpwdvds  12479
  Copyright terms: Public domain W3C validator