ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqnn Unicode version

Theorem dvdsprmpweqnn 12276
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 9512 . . . . 5  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
2 dvdsprmpweq 12275 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
31, 2syl3an2 1267 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^
n ) ) )
43imp 123 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN0  A  =  ( P ^ n ) )
5 df-n0 9123 . . . . . 6  |-  NN0  =  ( NN  u.  { 0 } )
65rexeqi 2670 . . . . 5  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  E. n  e.  ( NN  u.  {
0 } ) A  =  ( P ^
n ) )
7 rexun 3307 . . . . 5  |-  ( E. n  e.  ( NN  u.  { 0 } ) A  =  ( P ^ n )  <-> 
( E. n  e.  NN  A  =  ( P ^ n )  \/  E. n  e. 
{ 0 } A  =  ( P ^
n ) ) )
86, 7bitri 183 . . . 4  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  <->  ( E. n  e.  NN  A  =  ( P ^
n )  \/  E. n  e.  { 0 } A  =  ( P ^ n ) ) )
9 0z 9210 . . . . . . 7  |-  0  e.  ZZ
10 oveq2 5858 . . . . . . . . 9  |-  ( n  =  0  ->  ( P ^ n )  =  ( P ^ 0 ) )
1110eqeq2d 2182 . . . . . . . 8  |-  ( n  =  0  ->  ( A  =  ( P ^ n )  <->  A  =  ( P ^ 0 ) ) )
1211rexsng 3622 . . . . . . 7  |-  ( 0  e.  ZZ  ->  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) ) )
139, 12ax-mp 5 . . . . . 6  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  <-> 
A  =  ( P ^ 0 ) )
14 prmnn 12051 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  NN )
1514nncnd 8879 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  CC )
1615exp0d 10590 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  ( P ^ 0 )  =  1 )
17163ad2ant1 1013 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( P ^
0 )  =  1 )
1817eqeq2d 2182 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  <->  A  =  1
) )
19 eluz2b3 9550 . . . . . . . . . . 11  |-  ( A  e.  ( ZZ>= `  2
)  <->  ( A  e.  NN  /\  A  =/=  1 ) )
20 eqneqall 2350 . . . . . . . . . . . 12  |-  ( A  =  1  ->  ( A  =/=  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2120com12 30 . . . . . . . . . . 11  |-  ( A  =/=  1  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2219, 21simplbiim 385 . . . . . . . . . 10  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( A  =  1  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
23223ad2ant2 1014 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  1  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2418, 23sylbid 149 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  =  ( P ^ 0 )  ->  ( A  ||  ( P ^ N
)  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2524com12 30 . . . . . . 7  |-  ( A  =  ( P ^
0 )  ->  (
( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) ) )
2625impd 252 . . . . . 6  |-  ( A  =  ( P ^
0 )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2713, 26sylbi 120 . . . . 5  |-  ( E. n  e.  { 0 } A  =  ( P ^ n )  ->  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
2827jao1i 791 . . . 4  |-  ( ( E. n  e.  NN  A  =  ( P ^ n )  \/ 
E. n  e.  {
0 } A  =  ( P ^ n
) )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
298, 28sylbi 120 . . 3  |-  ( E. n  e.  NN0  A  =  ( P ^
n )  ->  (
( ( P  e. 
Prime  /\  A  e.  (
ZZ>= `  2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
304, 29mpcom 36 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ( ZZ>= ` 
2 )  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N
) )  ->  E. n  e.  NN  A  =  ( P ^ n ) )
3130ex 114 1  |-  ( ( P  e.  Prime  /\  A  e.  ( ZZ>= `  2 )  /\  N  e.  NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN  A  =  ( P ^ n ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   E.wrex 2449    u. cun 3119   {csn 3581   class class class wbr 3987   ` cfv 5196  (class class class)co 5850   0cc0 7761   1c1 7762   NNcn 8865   2c2 8916   NN0cn0 9122   ZZcz 9199   ZZ>=cuz 9474   ^cexp 10462    || cdvds 11736   Primecprime 12048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-er 6509  df-en 6715  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-xnn0 9186  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-gcd 11885  df-prm 12049  df-pc 12226
This theorem is referenced by:  difsqpwdvds  12278
  Copyright terms: Public domain W3C validator