ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem3 Unicode version

Theorem 2lgsoddprmlem3 15588
Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 15507 . . 3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( N  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2 eleq1 2268 . . . . 5  |-  ( ( N  mod  8 )  =  R  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
32eqcoms 2208 . . . 4  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
4 elun 3314 . . . . . 6  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( R  e. 
{ 1 ,  7 }  \/  R  e. 
{ 3 ,  5 } ) )
5 elpri 3656 . . . . . . . 8  |-  ( R  e.  { 3 ,  5 }  ->  ( R  =  3  \/  R  =  5 ) )
6 oveq1 5951 . . . . . . . . . . . . . 14  |-  ( R  =  3  ->  ( R ^ 2 )  =  ( 3 ^ 2 ) )
76oveq1d 5959 . . . . . . . . . . . . 13  |-  ( R  =  3  ->  (
( R ^ 2 )  -  1 )  =  ( ( 3 ^ 2 )  - 
1 ) )
87oveq1d 5959 . . . . . . . . . . . 12  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 3 ^ 2 )  -  1 )  / 
8 ) )
9 2lgsoddprmlem3b 15585 . . . . . . . . . . . 12  |-  ( ( ( 3 ^ 2 )  -  1 )  /  8 )  =  1
108, 9eqtrdi 2254 . . . . . . . . . . 11  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  1 )
1110breq2d 4056 . . . . . . . . . 10  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  1 ) )
12 n2dvds1 12223 . . . . . . . . . . 11  |-  -.  2  ||  1
1312pm2.21i 647 . . . . . . . . . 10  |-  ( 2 
||  1  ->  R  e.  { 1 ,  7 } )
1411, 13biimtrdi 163 . . . . . . . . 9  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
15 oveq1 5951 . . . . . . . . . . . . . 14  |-  ( R  =  5  ->  ( R ^ 2 )  =  ( 5 ^ 2 ) )
1615oveq1d 5959 . . . . . . . . . . . . 13  |-  ( R  =  5  ->  (
( R ^ 2 )  -  1 )  =  ( ( 5 ^ 2 )  - 
1 ) )
1716oveq1d 5959 . . . . . . . . . . . 12  |-  ( R  =  5  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 5 ^ 2 )  -  1 )  / 
8 ) )
1817breq2d 4056 . . . . . . . . . . 11  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 5 ^ 2 )  - 
1 )  /  8
) ) )
19 2lgsoddprmlem3c 15586 . . . . . . . . . . . 12  |-  ( ( ( 5 ^ 2 )  -  1 )  /  8 )  =  3
2019breq2i 4052 . . . . . . . . . . 11  |-  ( 2 
||  ( ( ( 5 ^ 2 )  -  1 )  / 
8 )  <->  2  ||  3 )
2118, 20bitrdi 196 . . . . . . . . . 10  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  3 ) )
22 n2dvds3 12226 . . . . . . . . . . 11  |-  -.  2  ||  3
2322pm2.21i 647 . . . . . . . . . 10  |-  ( 2 
||  3  ->  R  e.  { 1 ,  7 } )
2421, 23biimtrdi 163 . . . . . . . . 9  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2514, 24jaoi 718 . . . . . . . 8  |-  ( ( R  =  3  \/  R  =  5 )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
265, 25syl 14 . . . . . . 7  |-  ( R  e.  { 3 ,  5 }  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2726jao1i 798 . . . . . 6  |-  ( ( R  e.  { 1 ,  7 }  \/  R  e.  { 3 ,  5 } )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
284, 27sylbi 121 . . . . 5  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  ->  R  e.  { 1 ,  7 } ) )
29 elpri 3656 . . . . . 6  |-  ( R  e.  { 1 ,  7 }  ->  ( R  =  1  \/  R  =  7 ) )
30 z0even 12222 . . . . . . . 8  |-  2  ||  0
31 oveq1 5951 . . . . . . . . . . 11  |-  ( R  =  1  ->  ( R ^ 2 )  =  ( 1 ^ 2 ) )
3231oveq1d 5959 . . . . . . . . . 10  |-  ( R  =  1  ->  (
( R ^ 2 )  -  1 )  =  ( ( 1 ^ 2 )  - 
1 ) )
3332oveq1d 5959 . . . . . . . . 9  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 1 ^ 2 )  -  1 )  / 
8 ) )
34 2lgsoddprmlem3a 15584 . . . . . . . . 9  |-  ( ( ( 1 ^ 2 )  -  1 )  /  8 )  =  0
3533, 34eqtrdi 2254 . . . . . . . 8  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  0 )
3630, 35breqtrrid 4082 . . . . . . 7  |-  ( R  =  1  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
37 2z 9400 . . . . . . . . 9  |-  2  e.  ZZ
38 3z 9401 . . . . . . . . 9  |-  3  e.  ZZ
39 dvdsmul1 12124 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  3  e.  ZZ )  ->  2  ||  ( 2  x.  3 ) )
4037, 38, 39mp2an 426 . . . . . . . 8  |-  2  ||  ( 2  x.  3 )
41 oveq1 5951 . . . . . . . . . . 11  |-  ( R  =  7  ->  ( R ^ 2 )  =  ( 7 ^ 2 ) )
4241oveq1d 5959 . . . . . . . . . 10  |-  ( R  =  7  ->  (
( R ^ 2 )  -  1 )  =  ( ( 7 ^ 2 )  - 
1 ) )
4342oveq1d 5959 . . . . . . . . 9  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 7 ^ 2 )  -  1 )  / 
8 ) )
44 2lgsoddprmlem3d 15587 . . . . . . . . 9  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( 2  x.  3 )
4543, 44eqtrdi 2254 . . . . . . . 8  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( 2  x.  3 ) )
4640, 45breqtrrid 4082 . . . . . . 7  |-  ( R  =  7  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4736, 46jaoi 718 . . . . . 6  |-  ( ( R  =  1  \/  R  =  7 )  ->  2  ||  (
( ( R ^
2 )  -  1 )  /  8 ) )
4829, 47syl 14 . . . . 5  |-  ( R  e.  { 1 ,  7 }  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4928, 48impbid1 142 . . . 4  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) )
503, 49biimtrdi 163 . . 3  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) ) )
511, 50syl5com 29 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( R  =  ( N  mod  8
)  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) ) )
52513impia 1203 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176    u. cun 3164   {cpr 3634   class class class wbr 4044  (class class class)co 5944   0cc0 7925   1c1 7926    x. cmul 7930    - cmin 8243    / cdiv 8745   2c2 9087   3c3 9088   5c5 9090   7c7 9092   8c8 9093   ZZcz 9372    mod cmo 10467   ^cexp 10683    || cdvds 12098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-dvds 12099
This theorem is referenced by:  2lgsoddprmlem4  15589
  Copyright terms: Public domain W3C validator