ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2lgsoddprmlem3 Unicode version

Theorem 2lgsoddprmlem3 15199
Description: Lemma 3 for 2lgsoddprm . (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
2lgsoddprmlem3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )

Proof of Theorem 2lgsoddprmlem3
StepHypRef Expression
1 lgsdir2lem3 15146 . . 3  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( N  mod  8 )  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) )
2 eleq1 2256 . . . . 5  |-  ( ( N  mod  8 )  =  R  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
32eqcoms 2196 . . . 4  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } ) ) )
4 elun 3300 . . . . . 6  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  <->  ( R  e. 
{ 1 ,  7 }  \/  R  e. 
{ 3 ,  5 } ) )
5 elpri 3641 . . . . . . . 8  |-  ( R  e.  { 3 ,  5 }  ->  ( R  =  3  \/  R  =  5 ) )
6 oveq1 5925 . . . . . . . . . . . . . 14  |-  ( R  =  3  ->  ( R ^ 2 )  =  ( 3 ^ 2 ) )
76oveq1d 5933 . . . . . . . . . . . . 13  |-  ( R  =  3  ->  (
( R ^ 2 )  -  1 )  =  ( ( 3 ^ 2 )  - 
1 ) )
87oveq1d 5933 . . . . . . . . . . . 12  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 3 ^ 2 )  -  1 )  / 
8 ) )
9 2lgsoddprmlem3b 15196 . . . . . . . . . . . 12  |-  ( ( ( 3 ^ 2 )  -  1 )  /  8 )  =  1
108, 9eqtrdi 2242 . . . . . . . . . . 11  |-  ( R  =  3  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  1 )
1110breq2d 4041 . . . . . . . . . 10  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  1 ) )
12 n2dvds1 12053 . . . . . . . . . . 11  |-  -.  2  ||  1
1312pm2.21i 647 . . . . . . . . . 10  |-  ( 2 
||  1  ->  R  e.  { 1 ,  7 } )
1411, 13biimtrdi 163 . . . . . . . . 9  |-  ( R  =  3  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
15 oveq1 5925 . . . . . . . . . . . . . 14  |-  ( R  =  5  ->  ( R ^ 2 )  =  ( 5 ^ 2 ) )
1615oveq1d 5933 . . . . . . . . . . . . 13  |-  ( R  =  5  ->  (
( R ^ 2 )  -  1 )  =  ( ( 5 ^ 2 )  - 
1 ) )
1716oveq1d 5933 . . . . . . . . . . . 12  |-  ( R  =  5  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 5 ^ 2 )  -  1 )  / 
8 ) )
1817breq2d 4041 . . . . . . . . . . 11  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  ( ( ( 5 ^ 2 )  - 
1 )  /  8
) ) )
19 2lgsoddprmlem3c 15197 . . . . . . . . . . . 12  |-  ( ( ( 5 ^ 2 )  -  1 )  /  8 )  =  3
2019breq2i 4037 . . . . . . . . . . 11  |-  ( 2 
||  ( ( ( 5 ^ 2 )  -  1 )  / 
8 )  <->  2  ||  3 )
2118, 20bitrdi 196 . . . . . . . . . 10  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  <->  2  ||  3 ) )
22 n2dvds3 12056 . . . . . . . . . . 11  |-  -.  2  ||  3
2322pm2.21i 647 . . . . . . . . . 10  |-  ( 2 
||  3  ->  R  e.  { 1 ,  7 } )
2421, 23biimtrdi 163 . . . . . . . . 9  |-  ( R  =  5  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2514, 24jaoi 717 . . . . . . . 8  |-  ( ( R  =  3  \/  R  =  5 )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
265, 25syl 14 . . . . . . 7  |-  ( R  e.  { 3 ,  5 }  ->  (
2  ||  ( (
( R ^ 2 )  -  1 )  /  8 )  ->  R  e.  { 1 ,  7 } ) )
2726jao1i 797 . . . . . 6  |-  ( ( R  e.  { 1 ,  7 }  \/  R  e.  { 3 ,  5 } )  ->  ( 2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
)  ->  R  e.  { 1 ,  7 } ) )
284, 27sylbi 121 . . . . 5  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  ->  R  e.  { 1 ,  7 } ) )
29 elpri 3641 . . . . . 6  |-  ( R  e.  { 1 ,  7 }  ->  ( R  =  1  \/  R  =  7 ) )
30 z0even 12052 . . . . . . . 8  |-  2  ||  0
31 oveq1 5925 . . . . . . . . . . 11  |-  ( R  =  1  ->  ( R ^ 2 )  =  ( 1 ^ 2 ) )
3231oveq1d 5933 . . . . . . . . . 10  |-  ( R  =  1  ->  (
( R ^ 2 )  -  1 )  =  ( ( 1 ^ 2 )  - 
1 ) )
3332oveq1d 5933 . . . . . . . . 9  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 1 ^ 2 )  -  1 )  / 
8 ) )
34 2lgsoddprmlem3a 15195 . . . . . . . . 9  |-  ( ( ( 1 ^ 2 )  -  1 )  /  8 )  =  0
3533, 34eqtrdi 2242 . . . . . . . 8  |-  ( R  =  1  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  0 )
3630, 35breqtrrid 4067 . . . . . . 7  |-  ( R  =  1  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
37 2z 9345 . . . . . . . . 9  |-  2  e.  ZZ
38 3z 9346 . . . . . . . . 9  |-  3  e.  ZZ
39 dvdsmul1 11956 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  3  e.  ZZ )  ->  2  ||  ( 2  x.  3 ) )
4037, 38, 39mp2an 426 . . . . . . . 8  |-  2  ||  ( 2  x.  3 )
41 oveq1 5925 . . . . . . . . . . 11  |-  ( R  =  7  ->  ( R ^ 2 )  =  ( 7 ^ 2 ) )
4241oveq1d 5933 . . . . . . . . . 10  |-  ( R  =  7  ->  (
( R ^ 2 )  -  1 )  =  ( ( 7 ^ 2 )  - 
1 ) )
4342oveq1d 5933 . . . . . . . . 9  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( ( ( 7 ^ 2 )  -  1 )  / 
8 ) )
44 2lgsoddprmlem3d 15198 . . . . . . . . 9  |-  ( ( ( 7 ^ 2 )  -  1 )  /  8 )  =  ( 2  x.  3 )
4543, 44eqtrdi 2242 . . . . . . . 8  |-  ( R  =  7  ->  (
( ( R ^
2 )  -  1 )  /  8 )  =  ( 2  x.  3 ) )
4640, 45breqtrrid 4067 . . . . . . 7  |-  ( R  =  7  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4736, 46jaoi 717 . . . . . 6  |-  ( ( R  =  1  \/  R  =  7 )  ->  2  ||  (
( ( R ^
2 )  -  1 )  /  8 ) )
4829, 47syl 14 . . . . 5  |-  ( R  e.  { 1 ,  7 }  ->  2  ||  ( ( ( R ^ 2 )  - 
1 )  /  8
) )
4928, 48impbid1 142 . . . 4  |-  ( R  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) )
503, 49biimtrdi 163 . . 3  |-  ( R  =  ( N  mod  8 )  ->  (
( N  mod  8
)  e.  ( { 1 ,  7 }  u.  { 3 ,  5 } )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) ) )
511, 50syl5com 29 . 2  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N )  ->  ( R  =  ( N  mod  8
)  ->  ( 2 
||  ( ( ( R ^ 2 )  -  1 )  / 
8 )  <->  R  e.  { 1 ,  7 } ) ) )
52513impia 1202 1  |-  ( ( N  e.  ZZ  /\  -.  2  ||  N  /\  R  =  ( N  mod  8 ) )  -> 
( 2  ||  (
( ( R ^
2 )  -  1 )  /  8 )  <-> 
R  e.  { 1 ,  7 } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164    u. cun 3151   {cpr 3619   class class class wbr 4029  (class class class)co 5918   0cc0 7872   1c1 7873    x. cmul 7877    - cmin 8190    / cdiv 8691   2c2 9033   3c3 9034   5c5 9036   7c7 9038   8c8 9039   ZZcz 9317    mod cmo 10393   ^cexp 10609    || cdvds 11930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-xor 1387  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-dvds 11931
This theorem is referenced by:  2lgsoddprmlem4  15200
  Copyright terms: Public domain W3C validator