![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jaodan | Unicode version |
Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
jaodan.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
jaodan.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
jaodan |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jaodan.1 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ex 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | jaodan.2 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ex 115 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | jaod 718 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: mpjaodan 799 ordi 817 andi 819 dcor 937 ccase 966 mpjao3dan 1318 relop 4812 poltletr 5066 tfrlemisucaccv 6378 tfr1onlemsucaccv 6394 tfrcllemsucaccv 6407 phplem3 6910 ssfilem 6931 diffitest 6943 reapmul1 8614 apsqgt0 8620 recexaplem2 8671 nnnn0addcl 9270 un0addcl 9273 un0mulcl 9274 elz2 9388 xrltso 9862 xaddnemnf 9923 xaddnepnf 9924 fzsplit2 10116 fzsuc2 10145 elfzp12 10165 seqf1oglem2 10591 expp1 10617 expnegap0 10618 expcllem 10621 mulexpzap 10650 expaddzap 10654 expmulzap 10656 zzlesq 10779 bcpasc 10837 xrltmaxsup 11400 xrmaxaddlem 11403 summodc 11526 fsumsplit 11550 fprodsplitdc 11739 ef0lem 11803 odd2np1 12014 dvdslcm 12207 lcmeq0 12209 lcmcl 12210 lcmneg 12212 lcmgcd 12216 rpexp1i 12292 pcid 12462 4sqlem16 12544 xpsfeq 12928 mulgneg 13210 mulgnn0z 13219 lgsdir2lem4 15147 lgsdir2 15149 lgsdirnn0 15163 lgsdinn0 15164 |
Copyright terms: Public domain | W3C validator |