| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 |
|
| jaodan.2 |
|
| Ref | Expression |
|---|---|
| jaodan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | jaodan.2 |
. . . 4
| |
| 4 | 3 | ex 115 |
. . 3
|
| 5 | 2, 4 | jaod 719 |
. 2
|
| 6 | 5 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 800 ordi 818 andi 820 dcor 938 ccase 967 mpjao3dan 1320 relop 4829 poltletr 5084 tfrlemisucaccv 6413 tfr1onlemsucaccv 6429 tfrcllemsucaccv 6442 phplem3 6953 ssfilem 6974 diffitest 6986 reapmul1 8670 apsqgt0 8676 recexaplem2 8727 nnnn0addcl 9327 un0addcl 9330 un0mulcl 9331 elz2 9446 xrltso 9920 xaddnemnf 9981 xaddnepnf 9982 fzsplit2 10174 fzsuc2 10203 elfzp12 10223 seqf1oglem2 10667 expp1 10693 expnegap0 10694 expcllem 10697 mulexpzap 10726 expaddzap 10730 expmulzap 10732 zzlesq 10855 bcpasc 10913 ccatass 11067 ccatrn 11068 ccatswrd 11126 ccatpfx 11155 xrltmaxsup 11601 xrmaxaddlem 11604 summodc 11727 fsumsplit 11751 fprodsplitdc 11940 ef0lem 12004 odd2np1 12217 dvdslcm 12424 lcmeq0 12426 lcmcl 12427 lcmneg 12429 lcmgcd 12433 rpexp1i 12509 pcid 12680 4sqlem16 12762 xpsfeq 13210 mulgneg 13509 mulgnn0z 13518 lgsdir2lem4 15541 lgsdir2 15543 lgsdirnn0 15557 lgsdinn0 15558 |
| Copyright terms: Public domain | W3C validator |