| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jaodan | Unicode version | ||
| Description: Deduction disjoining the antecedents of two implications. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| jaodan.1 |
|
| jaodan.2 |
|
| Ref | Expression |
|---|---|
| jaodan |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jaodan.1 |
. . . 4
| |
| 2 | 1 | ex 115 |
. . 3
|
| 3 | jaodan.2 |
. . . 4
| |
| 4 | 3 | ex 115 |
. . 3
|
| 5 | 2, 4 | jaod 722 |
. 2
|
| 6 | 5 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: mpjaodan 803 ordi 821 andi 823 dcor 941 ccase 970 mpjao3dan 1341 relop 4872 poltletr 5129 tfrlemisucaccv 6471 tfr1onlemsucaccv 6487 tfrcllemsucaccv 6500 phplem3 7015 ssfilem 7037 diffitest 7049 pr1or2 7367 reapmul1 8742 apsqgt0 8748 recexaplem2 8799 nnnn0addcl 9399 un0addcl 9402 un0mulcl 9403 elz2 9518 xrltso 9992 xaddnemnf 10053 xaddnepnf 10054 fzsplit2 10246 fzsuc2 10275 elfzp12 10295 seqf1oglem2 10742 expp1 10768 expnegap0 10769 expcllem 10772 mulexpzap 10801 expaddzap 10805 expmulzap 10807 zzlesq 10930 bcpasc 10988 ccatass 11143 ccatrn 11144 ccatswrd 11202 ccatpfx 11233 cats1un 11253 xrltmaxsup 11768 xrmaxaddlem 11771 summodc 11894 fsumsplit 11918 fprodsplitdc 12107 ef0lem 12171 odd2np1 12384 dvdslcm 12591 lcmeq0 12593 lcmcl 12594 lcmneg 12596 lcmgcd 12600 rpexp1i 12676 pcid 12847 4sqlem16 12929 xpsfeq 13378 mulgneg 13677 mulgnn0z 13686 lgsdir2lem4 15710 lgsdir2 15712 lgsdirnn0 15726 lgsdinn0 15727 |
| Copyright terms: Public domain | W3C validator |