ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqle Unicode version

Theorem dvdsprmpweqle 12290
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 12288 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
21imp 123 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN0  A  =  ( P ^
n ) )
3 simplr 525 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  e.  NN0 )
43nn0zd 9332 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  e.  ZZ )
5 simp3 994 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  NN0 )
65ad3antrrr 489 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  N  e.  NN0 )
76nn0zd 9332 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  N  e.  ZZ )
8 zlelttric 9257 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  ->  ( n  <_  N  \/  N  <  n ) )
94, 7, 8syl2anc 409 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( n  <_  N  \/  N  <  n ) )
10 breq1 3992 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( P ^
n )  ->  ( A  ||  ( P ^ N )  <->  ( P ^ n )  ||  ( P ^ N ) ) )
1110adantl 275 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( A  ||  ( P ^ N
)  <->  ( P ^
n )  ||  ( P ^ N ) ) )
12 prmnn 12064 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  Prime  ->  P  e.  NN )
1312nnnn0d 9188 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e. 
NN0 )
14133ad2ant1 1013 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  NN0 )
1514adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  NN0 )
16 simpr 109 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
1715, 16nn0expcld 10632 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  NN0 )
1817nn0zd 9332 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  ZZ )
1912nncnd 8892 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  CC )
20193ad2ant1 1013 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  CC )
2120adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  CC )
2212nnap0d 8924 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P #  0 )
23223ad2ant1 1013 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P #  0 )
2423adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P #  0 )
25 nn0z 9232 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN0  ->  n  e.  ZZ )
2625adantl 275 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  ZZ )
2721, 24, 26expap0d 10615 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
) #  0 )
28 0zd 9224 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
0  e.  ZZ )
29 zapne 9286 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P ^ n
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( P ^
n ) #  0  <->  ( P ^ n )  =/=  0 ) )
3018, 28, 29syl2anc 409 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n ) #  0  <->  ( P ^ n )  =/=  0 ) )
3127, 30mpbid 146 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  =/=  0 )
325adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  NN0 )
3315, 32nn0expcld 10632 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ N
)  e.  NN0 )
3433nn0zd 9332 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ N
)  e.  ZZ )
35 dvdsval2 11752 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P ^ n
)  e.  ZZ  /\  ( P ^ n )  =/=  0  /\  ( P ^ N )  e.  ZZ )  ->  (
( P ^ n
)  ||  ( P ^ N )  <->  ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ ) )
3618, 31, 34, 35syl3anc 1233 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n )  ||  ( P ^ N )  <->  ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ ) )
3732nn0zd 9332 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  ZZ )
3821, 24, 26, 37expsubapd 10620 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ ( N  -  n )
)  =  ( ( P ^ N )  /  ( P ^
n ) ) )
3938eqcomd 2176 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^ N )  /  ( P ^ n ) )  =  ( P ^
( N  -  n
) ) )
4039eleq1d 2239 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ  <->  ( P ^ ( N  -  n ) )  e.  ZZ ) )
4121adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P  e.  CC )
4224adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P #  0
)
43 nn0cn 9145 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN0  ->  N  e.  CC )
44433ad2ant3 1015 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  CC )
4544adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  CC )
46 nn0cn 9145 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  NN0  ->  n  e.  CC )
4746adantl 275 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  CC )
4845, 47subcld 8230 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  -  n
)  e.  CC )
4948adantr 274 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( N  -  n )  e.  CC )
5044, 46anim12i 336 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  e.  CC  /\  n  e.  CC ) )
5150adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( N  e.  CC  /\  n  e.  CC ) )
52 negsubdi2 8178 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  CC  /\  n  e.  CC )  -> 
-u ( N  -  n )  =  ( n  -  N ) )
5351, 52syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -u ( N  -  n )  =  ( n  -  N
) )
545anim1ci 339 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( n  e.  NN0  /\  N  e.  NN0 )
)
55 ltsubnn0 9279 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  n  ->  ( n  -  N
)  e.  NN0 )
)
5654, 55syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  ->  ( n  -  N
)  e.  NN0 )
)
5756imp 123 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( n  -  N )  e.  NN0 )
5853, 57eqeltrd 2247 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -u ( N  -  n )  e. 
NN0 )
59 expineg2 10485 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( ( N  -  n )  e.  CC  /\  -u ( N  -  n
)  e.  NN0 )
)  ->  ( P ^ ( N  -  n ) )  =  ( 1  /  ( P ^ -u ( N  -  n ) ) ) )
6041, 42, 49, 58, 59syl22anc 1234 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( P ^ ( N  -  n ) )  =  ( 1  /  ( P ^ -u ( N  -  n ) ) ) )
6160eleq1d 2239 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( N  -  n ) )  e.  ZZ  <->  ( 1  / 
( P ^ -u ( N  -  n )
) )  e.  ZZ ) )
6212nnred 8891 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( P  e.  Prime  ->  P  e.  RR )
63623ad2ant1 1013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  RR )
6463adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  RR )
6564adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P  e.  RR )
6665, 57reexpcld 10626 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( P ^ ( n  -  N ) )  e.  RR )
67 nn0z 9232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( N  e.  NN0  ->  N  e.  ZZ )
68673ad2ant3 1015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  ZZ )
6968, 25anim12i 336 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  e.  ZZ  /\  n  e.  ZZ ) )
70 znnsub 9263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( N  <  n  <->  ( n  -  N )  e.  NN ) )
7169, 70syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  <->  ( n  -  N )  e.  NN ) )
7271biimpa 294 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( n  -  N )  e.  NN )
73 prmgt1 12086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( P  e.  Prime  ->  1  < 
P )
74733ad2ant1 1013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  1  <  P )
7574adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
1  <  P )
7675adantr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  1  <  P )
77 expgt1 10514 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  RR  /\  ( n  -  N
)  e.  NN  /\  1  <  P )  -> 
1  <  ( P ^ ( n  -  N ) ) )
7865, 72, 76, 77syl3anc 1233 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  1  <  ( P ^ ( n  -  N ) ) )
7966, 78jca 304 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( n  -  N ) )  e.  RR  /\  1  < 
( P ^ (
n  -  N ) ) ) )
80 oveq2 5861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( P ^ -u ( N  -  n )
)  =  ( P ^ ( n  -  N ) ) )
8180eleq1d 2239 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( ( P ^ -u ( N  -  n
) )  e.  RR  <->  ( P ^ ( n  -  N ) )  e.  RR ) )
8280breq2d 4001 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( 1  <  ( P ^ -u ( N  -  n ) )  <->  1  <  ( P ^ ( n  -  N ) ) ) )
8381, 82anbi12d 470 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( ( ( P ^ -u ( N  -  n ) )  e.  RR  /\  1  <  ( P ^ -u ( N  -  n )
) )  <->  ( ( P ^ ( n  -  N ) )  e.  RR  /\  1  < 
( P ^ (
n  -  N ) ) ) ) )
8479, 83syl5ibrcom 156 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( -u ( N  -  n )  =  ( n  -  N )  ->  (
( P ^ -u ( N  -  n )
)  e.  RR  /\  1  <  ( P ^ -u ( N  -  n
) ) ) ) )
8553, 84mpd 13 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ -u ( N  -  n ) )  e.  RR  /\  1  <  ( P ^ -u ( N  -  n )
) ) )
86 recnz 9305 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P ^ -u ( N  -  n )
)  e.  RR  /\  1  <  ( P ^ -u ( N  -  n
) ) )  ->  -.  ( 1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ )
8785, 86syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -.  (
1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ )
8887pm2.21d 614 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( (
1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ  ->  n  <_  N ) )
8961, 88sylbid 149 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( N  -  n ) )  e.  ZZ  ->  n  <_  N ) )
9089ex 114 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  ->  ( ( P ^
( N  -  n
) )  e.  ZZ  ->  n  <_  N )
) )
9190com23 78 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
( N  -  n
) )  e.  ZZ  ->  ( N  <  n  ->  n  <_  N )
) )
9240, 91sylbid 149 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ  ->  ( N  <  n  ->  n  <_  N )
) )
9336, 92sylbid 149 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n )  ||  ( P ^ N )  -> 
( N  <  n  ->  n  <_  N )
) )
9493adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( ( P ^ n )  ||  ( P ^ N )  ->  ( N  < 
n  ->  n  <_  N ) ) )
9511, 94sylbid 149 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( A  ||  ( P ^ N
)  ->  ( N  <  n  ->  n  <_  N ) ) )
9695ex 114 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( A  =  ( P ^ n )  ->  ( A  ||  ( P ^ N )  ->  ( N  < 
n  ->  n  <_  N ) ) ) )
9796com23 78 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( A  ||  ( P ^ N )  -> 
( A  =  ( P ^ n )  ->  ( N  < 
n  ->  n  <_  N ) ) ) )
9897ex 114 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  (
n  e.  NN0  ->  ( A  ||  ( P ^ N )  -> 
( A  =  ( P ^ n )  ->  ( N  < 
n  ->  n  <_  N ) ) ) ) )
9998com23 78 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  (
n  e.  NN0  ->  ( A  =  ( P ^ n )  -> 
( N  <  n  ->  n  <_  N )
) ) ) )
10099imp41 351 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( N  <  n  ->  n  <_  N )
)
101100com12 30 . . . . . . . 8  |-  ( N  <  n  ->  (
( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  <_  N ) )
102101jao1i 791 . . . . . . 7  |-  ( ( n  <_  N  \/  N  <  n )  -> 
( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  n  <_  N
) )
1039, 102mpcom 36 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  <_  N )
104 simpr 109 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  A  =  ( P ^ n ) )
105103, 104jca 304 . . . . 5  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( n  <_  N  /\  A  =  ( P ^ n ) ) )
106105ex 114 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  /\  n  e.  NN0 )  ->  ( A  =  ( P ^ n
)  ->  ( n  <_  N  /\  A  =  ( P ^ n
) ) ) )
107106reximdva 2572 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  -> 
( E. n  e. 
NN0  A  =  ( P ^ n )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
1082, 107mpd 13 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) )
109108ex 114 1  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703    /\ w3a 973    = wceq 1348    e. wcel 2141    =/= wne 2340   E.wrex 2449   class class class wbr 3989  (class class class)co 5853   CCcc 7772   RRcr 7773   0cc0 7774   1c1 7775    < clt 7954    <_ cle 7955    - cmin 8090   -ucneg 8091   # cap 8500    / cdiv 8589   NNcn 8878   NN0cn0 9135   ZZcz 9212   ^cexp 10475    || cdvds 11749   Primecprime 12061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-isom 5207  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-sup 6961  df-inf 6962  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-xnn0 9199  df-z 9213  df-uz 9488  df-q 9579  df-rp 9611  df-fz 9966  df-fzo 10099  df-fl 10226  df-mod 10279  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963  df-dvds 11750  df-gcd 11898  df-prm 12062  df-pc 12239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator