ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsprmpweqle Unicode version

Theorem dvdsprmpweqle 12338
Description: If a positive integer divides a prime power, it is a prime power with a smaller exponent. (Contributed by AV, 25-Jul-2021.)
Assertion
Ref Expression
dvdsprmpweqle  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
Distinct variable groups:    A, n    n, N    P, n

Proof of Theorem dvdsprmpweqle
StepHypRef Expression
1 dvdsprmpweq 12336 . . . 4  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  A  =  ( P ^ n ) ) )
21imp 124 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN0  A  =  ( P ^
n ) )
3 simplr 528 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  e.  NN0 )
43nn0zd 9375 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  e.  ZZ )
5 simp3 999 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  NN0 )
65ad3antrrr 492 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  N  e.  NN0 )
76nn0zd 9375 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  N  e.  ZZ )
8 zlelttric 9300 . . . . . . . 8  |-  ( ( n  e.  ZZ  /\  N  e.  ZZ )  ->  ( n  <_  N  \/  N  <  n ) )
94, 7, 8syl2anc 411 . . . . . . 7  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( n  <_  N  \/  N  <  n ) )
10 breq1 4008 . . . . . . . . . . . . . . . 16  |-  ( A  =  ( P ^
n )  ->  ( A  ||  ( P ^ N )  <->  ( P ^ n )  ||  ( P ^ N ) ) )
1110adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( A  ||  ( P ^ N
)  <->  ( P ^
n )  ||  ( P ^ N ) ) )
12 prmnn 12112 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( P  e.  Prime  ->  P  e.  NN )
1312nnnn0d 9231 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e. 
NN0 )
14133ad2ant1 1018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  NN0 )
1514adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  NN0 )
16 simpr 110 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  NN0 )
1715, 16nn0expcld 10679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  NN0 )
1817nn0zd 9375 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  e.  ZZ )
1912nncnd 8935 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  CC )
20193ad2ant1 1018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  CC )
2120adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  CC )
2212nnap0d 8967 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P #  0 )
23223ad2ant1 1018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P #  0 )
2423adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P #  0 )
25 nn0z 9275 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN0  ->  n  e.  ZZ )
2625adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  ZZ )
2721, 24, 26expap0d 10662 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
) #  0 )
28 0zd 9267 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
0  e.  ZZ )
29 zapne 9329 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P ^ n
)  e.  ZZ  /\  0  e.  ZZ )  ->  ( ( P ^
n ) #  0  <->  ( P ^ n )  =/=  0 ) )
3018, 28, 29syl2anc 411 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n ) #  0  <->  ( P ^ n )  =/=  0 ) )
3127, 30mpbid 147 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ n
)  =/=  0 )
325adantr 276 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  NN0 )
3315, 32nn0expcld 10679 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ N
)  e.  NN0 )
3433nn0zd 9375 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ N
)  e.  ZZ )
35 dvdsval2 11799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P ^ n
)  e.  ZZ  /\  ( P ^ n )  =/=  0  /\  ( P ^ N )  e.  ZZ )  ->  (
( P ^ n
)  ||  ( P ^ N )  <->  ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ ) )
3618, 31, 34, 35syl3anc 1238 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n )  ||  ( P ^ N )  <->  ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ ) )
3732nn0zd 9375 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  ZZ )
3821, 24, 26, 37expsubapd 10667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( P ^ ( N  -  n )
)  =  ( ( P ^ N )  /  ( P ^
n ) ) )
3938eqcomd 2183 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^ N )  /  ( P ^ n ) )  =  ( P ^
( N  -  n
) ) )
4039eleq1d 2246 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ  <->  ( P ^ ( N  -  n ) )  e.  ZZ ) )
4121adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P  e.  CC )
4224adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P #  0
)
43 nn0cn 9188 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( N  e.  NN0  ->  N  e.  CC )
44433ad2ant3 1020 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  CC )
4544adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  N  e.  CC )
46 nn0cn 9188 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  e.  NN0  ->  n  e.  CC )
4746adantl 277 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  n  e.  CC )
4845, 47subcld 8270 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  -  n
)  e.  CC )
4948adantr 276 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( N  -  n )  e.  CC )
5044, 46anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  e.  CC  /\  n  e.  CC ) )
5150adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( N  e.  CC  /\  n  e.  CC ) )
52 negsubdi2 8218 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( N  e.  CC  /\  n  e.  CC )  -> 
-u ( N  -  n )  =  ( n  -  N ) )
5351, 52syl 14 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -u ( N  -  n )  =  ( n  -  N
) )
545anim1ci 341 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( n  e.  NN0  /\  N  e.  NN0 )
)
55 ltsubnn0 9322 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( n  e.  NN0  /\  N  e.  NN0 )  -> 
( N  <  n  ->  ( n  -  N
)  e.  NN0 )
)
5654, 55syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  ->  ( n  -  N
)  e.  NN0 )
)
5756imp 124 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( n  -  N )  e.  NN0 )
5853, 57eqeltrd 2254 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -u ( N  -  n )  e. 
NN0 )
59 expineg2 10531 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P  e.  CC  /\  P #  0 )  /\  ( ( N  -  n )  e.  CC  /\  -u ( N  -  n
)  e.  NN0 )
)  ->  ( P ^ ( N  -  n ) )  =  ( 1  /  ( P ^ -u ( N  -  n ) ) ) )
6041, 42, 49, 58, 59syl22anc 1239 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( P ^ ( N  -  n ) )  =  ( 1  /  ( P ^ -u ( N  -  n ) ) ) )
6160eleq1d 2246 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( N  -  n ) )  e.  ZZ  <->  ( 1  / 
( P ^ -u ( N  -  n )
) )  e.  ZZ ) )
6212nnred 8934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( P  e.  Prime  ->  P  e.  RR )
63623ad2ant1 1018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  P  e.  RR )
6463adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  ->  P  e.  RR )
6564adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  P  e.  RR )
6665, 57reexpcld 10673 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( P ^ ( n  -  N ) )  e.  RR )
67 nn0z 9275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( N  e.  NN0  ->  N  e.  ZZ )
68673ad2ant3 1020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  N  e.  ZZ )
6968, 25anim12i 338 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  e.  ZZ  /\  n  e.  ZZ ) )
70 znnsub 9306 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( N  e.  ZZ  /\  n  e.  ZZ )  ->  ( N  <  n  <->  ( n  -  N )  e.  NN ) )
7169, 70syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  <->  ( n  -  N )  e.  NN ) )
7271biimpa 296 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( n  -  N )  e.  NN )
73 prmgt1 12134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( P  e.  Prime  ->  1  < 
P )
74733ad2ant1 1018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  1  <  P )
7574adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
1  <  P )
7675adantr 276 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  1  <  P )
77 expgt1 10560 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( P  e.  RR  /\  ( n  -  N
)  e.  NN  /\  1  <  P )  -> 
1  <  ( P ^ ( n  -  N ) ) )
7865, 72, 76, 77syl3anc 1238 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  1  <  ( P ^ ( n  -  N ) ) )
7966, 78jca 306 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( n  -  N ) )  e.  RR  /\  1  < 
( P ^ (
n  -  N ) ) ) )
80 oveq2 5885 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( P ^ -u ( N  -  n )
)  =  ( P ^ ( n  -  N ) ) )
8180eleq1d 2246 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( ( P ^ -u ( N  -  n
) )  e.  RR  <->  ( P ^ ( n  -  N ) )  e.  RR ) )
8280breq2d 4017 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( 1  <  ( P ^ -u ( N  -  n ) )  <->  1  <  ( P ^ ( n  -  N ) ) ) )
8381, 82anbi12d 473 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( -u ( N  -  n
)  =  ( n  -  N )  -> 
( ( ( P ^ -u ( N  -  n ) )  e.  RR  /\  1  <  ( P ^ -u ( N  -  n )
) )  <->  ( ( P ^ ( n  -  N ) )  e.  RR  /\  1  < 
( P ^ (
n  -  N ) ) ) ) )
8479, 83syl5ibrcom 157 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( -u ( N  -  n )  =  ( n  -  N )  ->  (
( P ^ -u ( N  -  n )
)  e.  RR  /\  1  <  ( P ^ -u ( N  -  n
) ) ) ) )
8553, 84mpd 13 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ -u ( N  -  n ) )  e.  RR  /\  1  <  ( P ^ -u ( N  -  n )
) ) )
86 recnz 9348 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( P ^ -u ( N  -  n )
)  e.  RR  /\  1  <  ( P ^ -u ( N  -  n
) ) )  ->  -.  ( 1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ )
8785, 86syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  -.  (
1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ )
8887pm2.21d 619 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( (
1  /  ( P ^ -u ( N  -  n ) ) )  e.  ZZ  ->  n  <_  N ) )
8961, 88sylbid 150 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  N  <  n
)  ->  ( ( P ^ ( N  -  n ) )  e.  ZZ  ->  n  <_  N ) )
9089ex 115 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( N  <  n  ->  ( ( P ^
( N  -  n
) )  e.  ZZ  ->  n  <_  N )
) )
9190com23 78 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
( N  -  n
) )  e.  ZZ  ->  ( N  <  n  ->  n  <_  N )
) )
9240, 91sylbid 150 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( ( P ^ N )  / 
( P ^ n
) )  e.  ZZ  ->  ( N  <  n  ->  n  <_  N )
) )
9336, 92sylbid 150 . . . . . . . . . . . . . . . 16  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( ( P ^
n )  ||  ( P ^ N )  -> 
( N  <  n  ->  n  <_  N )
) )
9493adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( ( P ^ n )  ||  ( P ^ N )  ->  ( N  < 
n  ->  n  <_  N ) ) )
9511, 94sylbid 150 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  ( A  ||  ( P ^ N
)  ->  ( N  <  n  ->  n  <_  N ) ) )
9695ex 115 . . . . . . . . . . . . 13  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( A  =  ( P ^ n )  ->  ( A  ||  ( P ^ N )  ->  ( N  < 
n  ->  n  <_  N ) ) ) )
9796com23 78 . . . . . . . . . . . 12  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  n  e.  NN0 )  -> 
( A  ||  ( P ^ N )  -> 
( A  =  ( P ^ n )  ->  ( N  < 
n  ->  n  <_  N ) ) ) )
9897ex 115 . . . . . . . . . . 11  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  (
n  e.  NN0  ->  ( A  ||  ( P ^ N )  -> 
( A  =  ( P ^ n )  ->  ( N  < 
n  ->  n  <_  N ) ) ) ) )
9998com23 78 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  (
n  e.  NN0  ->  ( A  =  ( P ^ n )  -> 
( N  <  n  ->  n  <_  N )
) ) ) )
10099imp41 353 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( N  <  n  ->  n  <_  N )
)
101100com12 30 . . . . . . . 8  |-  ( N  <  n  ->  (
( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  <_  N ) )
102101jao1i 796 . . . . . . 7  |-  ( ( n  <_  N  \/  N  <  n )  -> 
( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  /\  n  e.  NN0 )  /\  A  =  ( P ^ n ) )  ->  n  <_  N
) )
1039, 102mpcom 36 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  n  <_  N )
104 simpr 110 . . . . . 6  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  ->  A  =  ( P ^ n ) )
105103, 104jca 306 . . . . 5  |-  ( ( ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  /\  A  ||  ( P ^ N
) )  /\  n  e.  NN0 )  /\  A  =  ( P ^
n ) )  -> 
( n  <_  N  /\  A  =  ( P ^ n ) ) )
106105ex 115 . . . 4  |-  ( ( ( ( P  e. 
Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  /\  n  e.  NN0 )  ->  ( A  =  ( P ^ n
)  ->  ( n  <_  N  /\  A  =  ( P ^ n
) ) ) )
107106reximdva 2579 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  -> 
( E. n  e. 
NN0  A  =  ( P ^ n )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
1082, 107mpd 13 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e.  NN0 )  /\  A  ||  ( P ^ N ) )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) )
109108ex 115 1  |-  ( ( P  e.  Prime  /\  A  e.  NN  /\  N  e. 
NN0 )  ->  ( A  ||  ( P ^ N )  ->  E. n  e.  NN0  ( n  <_  N  /\  A  =  ( P ^ n ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2148    =/= wne 2347   E.wrex 2456   class class class wbr 4005  (class class class)co 5877   CCcc 7811   RRcr 7812   0cc0 7813   1c1 7814    < clt 7994    <_ cle 7995    - cmin 8130   -ucneg 8131   # cap 8540    / cdiv 8631   NNcn 8921   NN0cn0 9178   ZZcz 9255   ^cexp 10521    || cdvds 11796   Primecprime 12109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-1o 6419  df-2o 6420  df-er 6537  df-en 6743  df-sup 6985  df-inf 6986  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-xnn0 9242  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-fl 10272  df-mod 10325  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-dvds 11797  df-gcd 11946  df-prm 12110  df-pc 12287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator