ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne Unicode version

Theorem nn0enne 12213
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 9297 . . . 4  |-  ( ( N  /  2 )  e.  NN0  <->  ( ( N  /  2 )  e.  NN  \/  ( N  /  2 )  =  0 ) )
2 nncn 9044 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
3 2cnd 9109 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
4 2ap0 9129 . . . . . . . . 9  |-  2 #  0
54a1i 9 . . . . . . . 8  |-  ( N  e.  NN  ->  2 #  0 )
62, 3, 5diveqap0ad 8873 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  <->  N  =  0 ) )
7 eleq1 2268 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  e.  NN  <->  0  e.  NN ) )
8 0nnn 9063 . . . . . . . . . 10  |-  -.  0  e.  NN
98pm2.21i 647 . . . . . . . . 9  |-  ( 0  e.  NN  ->  ( N  /  2 )  e.  NN )
107, 9biimtrdi 163 . . . . . . . 8  |-  ( N  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1110com12 30 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  =  0  ->  ( N  /  2 )  e.  NN ) )
126, 11sylbid 150 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  -> 
( N  /  2
)  e.  NN ) )
1312com12 30 . . . . 5  |-  ( ( N  /  2 )  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1413jao1i 798 . . . 4  |-  ( ( ( N  /  2
)  e.  NN  \/  ( N  /  2
)  =  0 )  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
151, 14sylbi 121 . . 3  |-  ( ( N  /  2 )  e.  NN0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1615com12 30 . 2  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  ->  ( N  /  2 )  e.  NN ) )
17 nnnn0 9302 . 2  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e. 
NN0 )
1816, 17impbid1 142 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   0cc0 7925   # cap 8654    / cdiv 8745   NNcn 9036   2c2 9087   NN0cn0 9295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296
This theorem is referenced by:  nnehalf  12215
  Copyright terms: Public domain W3C validator