ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0enne Unicode version

Theorem nn0enne 11635
Description: A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nn0enne  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )

Proof of Theorem nn0enne
StepHypRef Expression
1 elnn0 9003 . . . 4  |-  ( ( N  /  2 )  e.  NN0  <->  ( ( N  /  2 )  e.  NN  \/  ( N  /  2 )  =  0 ) )
2 nncn 8752 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  CC )
3 2cnd 8817 . . . . . . . 8  |-  ( N  e.  NN  ->  2  e.  CC )
4 2ap0 8837 . . . . . . . . 9  |-  2 #  0
54a1i 9 . . . . . . . 8  |-  ( N  e.  NN  ->  2 #  0 )
62, 3, 5diveqap0ad 8584 . . . . . . 7  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  <->  N  =  0 ) )
7 eleq1 2203 . . . . . . . . 9  |-  ( N  =  0  ->  ( N  e.  NN  <->  0  e.  NN ) )
8 0nnn 8771 . . . . . . . . . 10  |-  -.  0  e.  NN
98pm2.21i 636 . . . . . . . . 9  |-  ( 0  e.  NN  ->  ( N  /  2 )  e.  NN )
107, 9syl6bi 162 . . . . . . . 8  |-  ( N  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1110com12 30 . . . . . . 7  |-  ( N  e.  NN  ->  ( N  =  0  ->  ( N  /  2 )  e.  NN ) )
126, 11sylbid 149 . . . . . 6  |-  ( N  e.  NN  ->  (
( N  /  2
)  =  0  -> 
( N  /  2
)  e.  NN ) )
1312com12 30 . . . . 5  |-  ( ( N  /  2 )  =  0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1413jao1i 786 . . . 4  |-  ( ( ( N  /  2
)  e.  NN  \/  ( N  /  2
)  =  0 )  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
151, 14sylbi 120 . . 3  |-  ( ( N  /  2 )  e.  NN0  ->  ( N  e.  NN  ->  ( N  /  2 )  e.  NN ) )
1615com12 30 . 2  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  ->  ( N  /  2 )  e.  NN ) )
17 nnnn0 9008 . 2  |-  ( ( N  /  2 )  e.  NN  ->  ( N  /  2 )  e. 
NN0 )
1816, 17impbid1 141 1  |-  ( N  e.  NN  ->  (
( N  /  2
)  e.  NN0  <->  ( N  /  2 )  e.  NN ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   class class class wbr 3937  (class class class)co 5782   0cc0 7644   # cap 8367    / cdiv 8456   NNcn 8744   2c2 8795   NN0cn0 9001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002
This theorem is referenced by:  nnehalf  11637
  Copyright terms: Public domain W3C validator