Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nd5 | Unicode version |
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
nd5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveeq2 1808 | . 2 | |
2 | 1 | nalequcoms 1510 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1346 wceq 1348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |