ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nd5 Unicode version

Theorem nd5 1806
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
nd5  |-  ( -. 
A. y  y  =  x  ->  ( z  =  y  ->  A. x  z  =  y )
)
Distinct variable group:    x, z

Proof of Theorem nd5
StepHypRef Expression
1 dveeq2 1803 . 2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
21nalequcoms 1505 1  |-  ( -. 
A. y  y  =  x  ->  ( z  =  y  ->  A. x  z  =  y )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1341    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator