ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nd5 Unicode version

Theorem nd5 1832
Description: A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
nd5  |-  ( -. 
A. y  y  =  x  ->  ( z  =  y  ->  A. x  z  =  y )
)
Distinct variable group:    x, z

Proof of Theorem nd5
StepHypRef Expression
1 dveeq2 1829 . 2  |-  ( -. 
A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
)
21nalequcoms 1531 1  |-  ( -. 
A. y  y  =  x  ->  ( z  =  y  ->  A. x  z  =  y )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362    = wceq 1364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator