ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfr Unicode version

Theorem nfr 1529
Description: Consequence of the definition of not-free. (Contributed by Mario Carneiro, 26-Sep-2016.)
Assertion
Ref Expression
nfr  |-  ( F/ x ph  ->  ( ph  ->  A. x ph )
)

Proof of Theorem nfr
StepHypRef Expression
1 df-nf 1472 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 sp 1522 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( ph  ->  A. x ph ) )
31, 2sylbi 121 1  |-  ( F/ x ph  ->  ( ph  ->  A. x ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   F/wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-4 1521
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nfri  1530  nfrd  1531  nfimd  1596  19.23t  1688  equs5or  1841  sbequi  1850  sbft  1859  sbcomxyyz  1988  rgen2a  2548
  Copyright terms: Public domain W3C validator