ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alequcoms Unicode version

Theorem alequcoms 1509
Description: A commutation rule for identical variable specifiers. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
alequcoms.1  |-  ( A. x  x  =  y  ->  ph )
Assertion
Ref Expression
alequcoms  |-  ( A. y  y  =  x  ->  ph )

Proof of Theorem alequcoms
StepHypRef Expression
1 alequcom 1508 . 2  |-  ( A. y  y  =  x  ->  A. x  x  =  y )
2 alequcoms.1 . 2  |-  ( A. x  x  =  y  ->  ph )
31, 2syl 14 1  |-  ( A. y  y  =  x  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-10 1498
This theorem is referenced by:  hbae  1711  dral1  1723  drex1  1791  aev  1805  sbequi  1832
  Copyright terms: Public domain W3C validator