ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1ddc Unicode version

Theorem necon1ddc 2418
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon1ddc.1  |-  ( ph  ->  (DECID  A  =  B  -> 
( A  =/=  B  ->  C  =  D ) ) )
Assertion
Ref Expression
necon1ddc  |-  ( ph  ->  (DECID  A  =  B  -> 
( C  =/=  D  ->  A  =  B ) ) )

Proof of Theorem necon1ddc
StepHypRef Expression
1 df-ne 2341 . 2  |-  ( C  =/=  D  <->  -.  C  =  D )
2 necon1ddc.1 . . 3  |-  ( ph  ->  (DECID  A  =  B  -> 
( A  =/=  B  ->  C  =  D ) ) )
32necon1bddc 2417 . 2  |-  ( ph  ->  (DECID  A  =  B  -> 
( -.  C  =  D  ->  A  =  B ) ) )
41, 3syl7bi 164 1  |-  ( ph  ->  (DECID  A  =  B  -> 
( C  =/=  D  ->  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 829    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-ne 2341
This theorem is referenced by:  xblss2ps  13198  xblss2  13199  lgsne0  13733
  Copyright terms: Public domain W3C validator