| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version | ||
| Description: One ball is contained in
another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 15081 for
extended metrics, we have to assume the balls are a finite distance
apart, or else |
| Ref | Expression |
|---|---|
| xblss2ps.1 |
|
| xblss2ps.2 |
|
| xblss2ps.3 |
|
| xblss2ps.4 |
|
| xblss2ps.5 |
|
| xblss2ps.6 |
|
| xblss2ps.7 |
|
| Ref | Expression |
|---|---|
| xblss2ps |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2ps.1 |
. . . . . 6
| |
| 2 | xblss2ps.2 |
. . . . . 6
| |
| 3 | xblss2ps.4 |
. . . . . 6
| |
| 4 | elblps 15064 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
. . . . 5
|
| 6 | 5 | simprbda 383 |
. . . 4
|
| 7 | 1 | adantr 276 |
. . . . . . . 8
|
| 8 | xblss2ps.3 |
. . . . . . . . 9
| |
| 9 | 8 | adantr 276 |
. . . . . . . 8
|
| 10 | psmetcl 15000 |
. . . . . . . 8
| |
| 11 | 7, 9, 6, 10 | syl3anc 1271 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | xblss2ps.6 |
. . . . . . . . . 10
| |
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 14 | rexrd 8196 |
. . . . . . . 8
|
| 16 | 3 | adantr 276 |
. . . . . . . 8
|
| 17 | 15, 16 | xaddcld 10080 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | xblss2ps.5 |
. . . . . . 7
| |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
|
| 21 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 22 | psmetcl 15000 |
. . . . . . . . . 10
| |
| 23 | 7, 21, 6, 22 | syl3anc 1271 |
. . . . . . . . 9
|
| 24 | 15, 23 | xaddcld 10080 |
. . . . . . . 8
|
| 25 | psmettri2 15002 |
. . . . . . . . 9
| |
| 26 | 7, 21, 9, 6, 25 | syl13anc 1273 |
. . . . . . . 8
|
| 27 | 5 | simplbda 384 |
. . . . . . . . 9
|
| 28 | xltadd2 10073 |
. . . . . . . . . 10
| |
| 29 | 23, 16, 14, 28 | syl3anc 1271 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpbid 147 |
. . . . . . . 8
|
| 31 | 11, 24, 17, 26, 30 | xrlelttrd 10006 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 34 | 16 | xnegcld 10051 |
. . . . . . . . . 10
|
| 35 | 33, 34 | xaddcld 10080 |
. . . . . . . . 9
|
| 36 | xblss2ps.7 |
. . . . . . . . . 10
| |
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | xleadd1a 10069 |
. . . . . . . . 9
| |
| 39 | 15, 35, 16, 37, 38 | syl31anc 1274 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | xnpcan 10068 |
. . . . . . . 8
| |
| 42 | 33, 41 | sylan 283 |
. . . . . . 7
|
| 43 | 40, 42 | breqtrd 4109 |
. . . . . 6
|
| 44 | 12, 18, 20, 32, 43 | xrltletrd 10007 |
. . . . 5
|
| 45 | 11 | adantr 276 |
. . . . . . 7
|
| 46 | 13 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | simpll 527 |
. . . . . . . . . 10
| |
| 48 | simplr 528 |
. . . . . . . . . . 11
| |
| 49 | simpr 110 |
. . . . . . . . . . . 12
| |
| 50 | 49 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 51 | 48, 50 | eleqtrd 2308 |
. . . . . . . . . 10
|
| 52 | xblpnfps 15072 |
. . . . . . . . . . . 12
| |
| 53 | 1, 2, 52 | syl2anc 411 |
. . . . . . . . . . 11
|
| 54 | 53 | simplbda 384 |
. . . . . . . . . 10
|
| 55 | 47, 51, 54 | syl2anc 411 |
. . . . . . . . 9
|
| 56 | 46, 55 | readdcld 8176 |
. . . . . . . 8
|
| 57 | 56 | rexrd 8196 |
. . . . . . 7
|
| 58 | pnfxr 8199 |
. . . . . . . 8
| |
| 59 | 58 | a1i 9 |
. . . . . . 7
|
| 60 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 61 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 62 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 63 | 6 | adantr 276 |
. . . . . . . . 9
|
| 64 | 60, 61, 62, 63, 25 | syl13anc 1273 |
. . . . . . . 8
|
| 65 | 46, 55 | rexaddd 10050 |
. . . . . . . 8
|
| 66 | 64, 65 | breqtrd 4109 |
. . . . . . 7
|
| 67 | ltpnf 9976 |
. . . . . . . 8
| |
| 68 | 56, 67 | syl 14 |
. . . . . . 7
|
| 69 | 45, 57, 59, 66, 68 | xrlelttrd 10006 |
. . . . . 6
|
| 70 | 19 | ad2antrr 488 |
. . . . . . . 8
|
| 71 | xrpnfdc 10038 |
. . . . . . . 8
| |
| 72 | 70, 71 | syl 14 |
. . . . . . 7
|
| 73 | 0xr 8193 |
. . . . . . . . . . 11
| |
| 74 | 73 | a1i 9 |
. . . . . . . . . 10
|
| 75 | psmetge0 15005 |
. . . . . . . . . . 11
| |
| 76 | 7, 21, 9, 75 | syl3anc 1271 |
. . . . . . . . . 10
|
| 77 | 74, 15, 35, 76, 37 | xrletrd 10008 |
. . . . . . . . 9
|
| 78 | ge0nemnf 10020 |
. . . . . . . . 9
| |
| 79 | 35, 77, 78 | syl2anc 411 |
. . . . . . . 8
|
| 80 | 79 | adantr 276 |
. . . . . . 7
|
| 81 | xaddmnf1 10044 |
. . . . . . . . . . . 12
| |
| 82 | 81 | ex 115 |
. . . . . . . . . . 11
|
| 83 | 70, 82 | syl 14 |
. . . . . . . . . 10
|
| 84 | xnegeq 10023 |
. . . . . . . . . . . . . 14
| |
| 85 | 49, 84 | syl 14 |
. . . . . . . . . . . . 13
|
| 86 | xnegpnf 10024 |
. . . . . . . . . . . . 13
| |
| 87 | 85, 86 | eqtrdi 2278 |
. . . . . . . . . . . 12
|
| 88 | 87 | oveq2d 6017 |
. . . . . . . . . . 11
|
| 89 | 88 | eqeq1d 2238 |
. . . . . . . . . 10
|
| 90 | 83, 89 | sylibrd 169 |
. . . . . . . . 9
|
| 91 | 90 | a1d 22 |
. . . . . . . 8
|
| 92 | 91 | necon1ddc 2478 |
. . . . . . 7
|
| 93 | 72, 80, 92 | mp2d 47 |
. . . . . 6
|
| 94 | 69, 93 | breqtrrd 4111 |
. . . . 5
|
| 95 | psmetge0 15005 |
. . . . . . . . . . 11
| |
| 96 | 7, 21, 6, 95 | syl3anc 1271 |
. . . . . . . . . 10
|
| 97 | 74, 23, 16, 96, 27 | xrlelttrd 10006 |
. . . . . . . . 9
|
| 98 | 74, 16, 97 | xrltled 9995 |
. . . . . . . 8
|
| 99 | ge0nemnf 10020 |
. . . . . . . 8
| |
| 100 | 16, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 16, 100 | jca 306 |
. . . . . 6
|
| 102 | xrnemnf 9973 |
. . . . . 6
| |
| 103 | 101, 102 | sylib 122 |
. . . . 5
|
| 104 | 44, 94, 103 | mpjaodan 803 |
. . . 4
|
| 105 | elblps 15064 |
. . . . 5
| |
| 106 | 7, 9, 33, 105 | syl3anc 1271 |
. . . 4
|
| 107 | 6, 104, 106 | mpbir2and 950 |
. . 3
|
| 108 | 107 | ex 115 |
. 2
|
| 109 | 108 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 |
| This theorem depends on definitions: df-bi 117 df-stab 836 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-map 6797 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-2 9169 df-xneg 9968 df-xadd 9969 df-psmet 14507 df-bl 14510 |
| This theorem is referenced by: blss2ps 15080 ssblps 15099 |
| Copyright terms: Public domain | W3C validator |