Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version |
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13201 for extended metrics, we have to assume the balls are a finite distance apart, or else will not even be in the infinity ball around . (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
xblss2ps.1 | PsMet |
xblss2ps.2 | |
xblss2ps.3 | |
xblss2ps.4 | |
xblss2ps.5 | |
xblss2ps.6 | |
xblss2ps.7 |
Ref | Expression |
---|---|
xblss2ps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xblss2ps.1 | . . . . . 6 PsMet | |
2 | xblss2ps.2 | . . . . . 6 | |
3 | xblss2ps.4 | . . . . . 6 | |
4 | elblps 13184 | . . . . . 6 PsMet | |
5 | 1, 2, 3, 4 | syl3anc 1233 | . . . . 5 |
6 | 5 | simprbda 381 | . . . 4 |
7 | 1 | adantr 274 | . . . . . . . 8 PsMet |
8 | xblss2ps.3 | . . . . . . . . 9 | |
9 | 8 | adantr 274 | . . . . . . . 8 |
10 | psmetcl 13120 | . . . . . . . 8 PsMet | |
11 | 7, 9, 6, 10 | syl3anc 1233 | . . . . . . 7 |
12 | 11 | adantr 274 | . . . . . 6 |
13 | xblss2ps.6 | . . . . . . . . . 10 | |
14 | 13 | adantr 274 | . . . . . . . . 9 |
15 | 14 | rexrd 7969 | . . . . . . . 8 |
16 | 3 | adantr 274 | . . . . . . . 8 |
17 | 15, 16 | xaddcld 9841 | . . . . . . 7 |
18 | 17 | adantr 274 | . . . . . 6 |
19 | xblss2ps.5 | . . . . . . 7 | |
20 | 19 | ad2antrr 485 | . . . . . 6 |
21 | 2 | adantr 274 | . . . . . . . . . 10 |
22 | psmetcl 13120 | . . . . . . . . . 10 PsMet | |
23 | 7, 21, 6, 22 | syl3anc 1233 | . . . . . . . . 9 |
24 | 15, 23 | xaddcld 9841 | . . . . . . . 8 |
25 | psmettri2 13122 | . . . . . . . . 9 PsMet | |
26 | 7, 21, 9, 6, 25 | syl13anc 1235 | . . . . . . . 8 |
27 | 5 | simplbda 382 | . . . . . . . . 9 |
28 | xltadd2 9834 | . . . . . . . . . 10 | |
29 | 23, 16, 14, 28 | syl3anc 1233 | . . . . . . . . 9 |
30 | 27, 29 | mpbid 146 | . . . . . . . 8 |
31 | 11, 24, 17, 26, 30 | xrlelttrd 9767 | . . . . . . 7 |
32 | 31 | adantr 274 | . . . . . 6 |
33 | 19 | adantr 274 | . . . . . . . . . 10 |
34 | 16 | xnegcld 9812 | . . . . . . . . . 10 |
35 | 33, 34 | xaddcld 9841 | . . . . . . . . 9 |
36 | xblss2ps.7 | . . . . . . . . . 10 | |
37 | 36 | adantr 274 | . . . . . . . . 9 |
38 | xleadd1a 9830 | . . . . . . . . 9 | |
39 | 15, 35, 16, 37, 38 | syl31anc 1236 | . . . . . . . 8 |
40 | 39 | adantr 274 | . . . . . . 7 |
41 | xnpcan 9829 | . . . . . . . 8 | |
42 | 33, 41 | sylan 281 | . . . . . . 7 |
43 | 40, 42 | breqtrd 4015 | . . . . . 6 |
44 | 12, 18, 20, 32, 43 | xrltletrd 9768 | . . . . 5 |
45 | 11 | adantr 274 | . . . . . . 7 |
46 | 13 | ad2antrr 485 | . . . . . . . . 9 |
47 | simpll 524 | . . . . . . . . . 10 | |
48 | simplr 525 | . . . . . . . . . . 11 | |
49 | simpr 109 | . . . . . . . . . . . 12 | |
50 | 49 | oveq2d 5869 | . . . . . . . . . . 11 |
51 | 48, 50 | eleqtrd 2249 | . . . . . . . . . 10 |
52 | xblpnfps 13192 | . . . . . . . . . . . 12 PsMet | |
53 | 1, 2, 52 | syl2anc 409 | . . . . . . . . . . 11 |
54 | 53 | simplbda 382 | . . . . . . . . . 10 |
55 | 47, 51, 54 | syl2anc 409 | . . . . . . . . 9 |
56 | 46, 55 | readdcld 7949 | . . . . . . . 8 |
57 | 56 | rexrd 7969 | . . . . . . 7 |
58 | pnfxr 7972 | . . . . . . . 8 | |
59 | 58 | a1i 9 | . . . . . . 7 |
60 | 1 | ad2antrr 485 | . . . . . . . . 9 PsMet |
61 | 2 | ad2antrr 485 | . . . . . . . . 9 |
62 | 8 | ad2antrr 485 | . . . . . . . . 9 |
63 | 6 | adantr 274 | . . . . . . . . 9 |
64 | 60, 61, 62, 63, 25 | syl13anc 1235 | . . . . . . . 8 |
65 | 46, 55 | rexaddd 9811 | . . . . . . . 8 |
66 | 64, 65 | breqtrd 4015 | . . . . . . 7 |
67 | ltpnf 9737 | . . . . . . . 8 | |
68 | 56, 67 | syl 14 | . . . . . . 7 |
69 | 45, 57, 59, 66, 68 | xrlelttrd 9767 | . . . . . 6 |
70 | 19 | ad2antrr 485 | . . . . . . . 8 |
71 | xrpnfdc 9799 | . . . . . . . 8 DECID | |
72 | 70, 71 | syl 14 | . . . . . . 7 DECID |
73 | 0xr 7966 | . . . . . . . . . . 11 | |
74 | 73 | a1i 9 | . . . . . . . . . 10 |
75 | psmetge0 13125 | . . . . . . . . . . 11 PsMet | |
76 | 7, 21, 9, 75 | syl3anc 1233 | . . . . . . . . . 10 |
77 | 74, 15, 35, 76, 37 | xrletrd 9769 | . . . . . . . . 9 |
78 | ge0nemnf 9781 | . . . . . . . . 9 | |
79 | 35, 77, 78 | syl2anc 409 | . . . . . . . 8 |
80 | 79 | adantr 274 | . . . . . . 7 |
81 | xaddmnf1 9805 | . . . . . . . . . . . 12 | |
82 | 81 | ex 114 | . . . . . . . . . . 11 |
83 | 70, 82 | syl 14 | . . . . . . . . . 10 |
84 | xnegeq 9784 | . . . . . . . . . . . . . 14 | |
85 | 49, 84 | syl 14 | . . . . . . . . . . . . 13 |
86 | xnegpnf 9785 | . . . . . . . . . . . . 13 | |
87 | 85, 86 | eqtrdi 2219 | . . . . . . . . . . . 12 |
88 | 87 | oveq2d 5869 | . . . . . . . . . . 11 |
89 | 88 | eqeq1d 2179 | . . . . . . . . . 10 |
90 | 83, 89 | sylibrd 168 | . . . . . . . . 9 |
91 | 90 | a1d 22 | . . . . . . . 8 DECID |
92 | 91 | necon1ddc 2418 | . . . . . . 7 DECID |
93 | 72, 80, 92 | mp2d 47 | . . . . . 6 |
94 | 69, 93 | breqtrrd 4017 | . . . . 5 |
95 | psmetge0 13125 | . . . . . . . . . . 11 PsMet | |
96 | 7, 21, 6, 95 | syl3anc 1233 | . . . . . . . . . 10 |
97 | 74, 23, 16, 96, 27 | xrlelttrd 9767 | . . . . . . . . 9 |
98 | 74, 16, 97 | xrltled 9756 | . . . . . . . 8 |
99 | ge0nemnf 9781 | . . . . . . . 8 | |
100 | 16, 98, 99 | syl2anc 409 | . . . . . . 7 |
101 | 16, 100 | jca 304 | . . . . . 6 |
102 | xrnemnf 9734 | . . . . . 6 | |
103 | 101, 102 | sylib 121 | . . . . 5 |
104 | 44, 94, 103 | mpjaodan 793 | . . . 4 |
105 | elblps 13184 | . . . . 5 PsMet | |
106 | 7, 9, 33, 105 | syl3anc 1233 | . . . 4 |
107 | 6, 104, 106 | mpbir2and 939 | . . 3 |
108 | 107 | ex 114 | . 2 |
109 | 108 | ssrdv 3153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 wss 3121 class class class wbr 3989 cfv 5198 (class class class)co 5853 cr 7773 cc0 7774 caddc 7777 cpnf 7951 cmnf 7952 cxr 7953 clt 7954 cle 7955 cxne 9726 cxad 9727 PsMetcpsmet 12773 cbl 12776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-map 6628 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-2 8937 df-xneg 9729 df-xadd 9730 df-psmet 12781 df-bl 12784 |
This theorem is referenced by: blss2ps 13200 ssblps 13219 |
Copyright terms: Public domain | W3C validator |