Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version |
Description: One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 13047 for extended metrics, we have to assume the balls are a finite distance apart, or else will not even be in the infinity ball around . (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.) |
Ref | Expression |
---|---|
xblss2ps.1 | PsMet |
xblss2ps.2 | |
xblss2ps.3 | |
xblss2ps.4 | |
xblss2ps.5 | |
xblss2ps.6 | |
xblss2ps.7 |
Ref | Expression |
---|---|
xblss2ps |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xblss2ps.1 | . . . . . 6 PsMet | |
2 | xblss2ps.2 | . . . . . 6 | |
3 | xblss2ps.4 | . . . . . 6 | |
4 | elblps 13030 | . . . . . 6 PsMet | |
5 | 1, 2, 3, 4 | syl3anc 1228 | . . . . 5 |
6 | 5 | simprbda 381 | . . . 4 |
7 | 1 | adantr 274 | . . . . . . . 8 PsMet |
8 | xblss2ps.3 | . . . . . . . . 9 | |
9 | 8 | adantr 274 | . . . . . . . 8 |
10 | psmetcl 12966 | . . . . . . . 8 PsMet | |
11 | 7, 9, 6, 10 | syl3anc 1228 | . . . . . . 7 |
12 | 11 | adantr 274 | . . . . . 6 |
13 | xblss2ps.6 | . . . . . . . . . 10 | |
14 | 13 | adantr 274 | . . . . . . . . 9 |
15 | 14 | rexrd 7948 | . . . . . . . 8 |
16 | 3 | adantr 274 | . . . . . . . 8 |
17 | 15, 16 | xaddcld 9820 | . . . . . . 7 |
18 | 17 | adantr 274 | . . . . . 6 |
19 | xblss2ps.5 | . . . . . . 7 | |
20 | 19 | ad2antrr 480 | . . . . . 6 |
21 | 2 | adantr 274 | . . . . . . . . . 10 |
22 | psmetcl 12966 | . . . . . . . . . 10 PsMet | |
23 | 7, 21, 6, 22 | syl3anc 1228 | . . . . . . . . 9 |
24 | 15, 23 | xaddcld 9820 | . . . . . . . 8 |
25 | psmettri2 12968 | . . . . . . . . 9 PsMet | |
26 | 7, 21, 9, 6, 25 | syl13anc 1230 | . . . . . . . 8 |
27 | 5 | simplbda 382 | . . . . . . . . 9 |
28 | xltadd2 9813 | . . . . . . . . . 10 | |
29 | 23, 16, 14, 28 | syl3anc 1228 | . . . . . . . . 9 |
30 | 27, 29 | mpbid 146 | . . . . . . . 8 |
31 | 11, 24, 17, 26, 30 | xrlelttrd 9746 | . . . . . . 7 |
32 | 31 | adantr 274 | . . . . . 6 |
33 | 19 | adantr 274 | . . . . . . . . . 10 |
34 | 16 | xnegcld 9791 | . . . . . . . . . 10 |
35 | 33, 34 | xaddcld 9820 | . . . . . . . . 9 |
36 | xblss2ps.7 | . . . . . . . . . 10 | |
37 | 36 | adantr 274 | . . . . . . . . 9 |
38 | xleadd1a 9809 | . . . . . . . . 9 | |
39 | 15, 35, 16, 37, 38 | syl31anc 1231 | . . . . . . . 8 |
40 | 39 | adantr 274 | . . . . . . 7 |
41 | xnpcan 9808 | . . . . . . . 8 | |
42 | 33, 41 | sylan 281 | . . . . . . 7 |
43 | 40, 42 | breqtrd 4008 | . . . . . 6 |
44 | 12, 18, 20, 32, 43 | xrltletrd 9747 | . . . . 5 |
45 | 11 | adantr 274 | . . . . . . 7 |
46 | 13 | ad2antrr 480 | . . . . . . . . 9 |
47 | simpll 519 | . . . . . . . . . 10 | |
48 | simplr 520 | . . . . . . . . . . 11 | |
49 | simpr 109 | . . . . . . . . . . . 12 | |
50 | 49 | oveq2d 5858 | . . . . . . . . . . 11 |
51 | 48, 50 | eleqtrd 2245 | . . . . . . . . . 10 |
52 | xblpnfps 13038 | . . . . . . . . . . . 12 PsMet | |
53 | 1, 2, 52 | syl2anc 409 | . . . . . . . . . . 11 |
54 | 53 | simplbda 382 | . . . . . . . . . 10 |
55 | 47, 51, 54 | syl2anc 409 | . . . . . . . . 9 |
56 | 46, 55 | readdcld 7928 | . . . . . . . 8 |
57 | 56 | rexrd 7948 | . . . . . . 7 |
58 | pnfxr 7951 | . . . . . . . 8 | |
59 | 58 | a1i 9 | . . . . . . 7 |
60 | 1 | ad2antrr 480 | . . . . . . . . 9 PsMet |
61 | 2 | ad2antrr 480 | . . . . . . . . 9 |
62 | 8 | ad2antrr 480 | . . . . . . . . 9 |
63 | 6 | adantr 274 | . . . . . . . . 9 |
64 | 60, 61, 62, 63, 25 | syl13anc 1230 | . . . . . . . 8 |
65 | 46, 55 | rexaddd 9790 | . . . . . . . 8 |
66 | 64, 65 | breqtrd 4008 | . . . . . . 7 |
67 | ltpnf 9716 | . . . . . . . 8 | |
68 | 56, 67 | syl 14 | . . . . . . 7 |
69 | 45, 57, 59, 66, 68 | xrlelttrd 9746 | . . . . . 6 |
70 | 19 | ad2antrr 480 | . . . . . . . 8 |
71 | xrpnfdc 9778 | . . . . . . . 8 DECID | |
72 | 70, 71 | syl 14 | . . . . . . 7 DECID |
73 | 0xr 7945 | . . . . . . . . . . 11 | |
74 | 73 | a1i 9 | . . . . . . . . . 10 |
75 | psmetge0 12971 | . . . . . . . . . . 11 PsMet | |
76 | 7, 21, 9, 75 | syl3anc 1228 | . . . . . . . . . 10 |
77 | 74, 15, 35, 76, 37 | xrletrd 9748 | . . . . . . . . 9 |
78 | ge0nemnf 9760 | . . . . . . . . 9 | |
79 | 35, 77, 78 | syl2anc 409 | . . . . . . . 8 |
80 | 79 | adantr 274 | . . . . . . 7 |
81 | xaddmnf1 9784 | . . . . . . . . . . . 12 | |
82 | 81 | ex 114 | . . . . . . . . . . 11 |
83 | 70, 82 | syl 14 | . . . . . . . . . 10 |
84 | xnegeq 9763 | . . . . . . . . . . . . . 14 | |
85 | 49, 84 | syl 14 | . . . . . . . . . . . . 13 |
86 | xnegpnf 9764 | . . . . . . . . . . . . 13 | |
87 | 85, 86 | eqtrdi 2215 | . . . . . . . . . . . 12 |
88 | 87 | oveq2d 5858 | . . . . . . . . . . 11 |
89 | 88 | eqeq1d 2174 | . . . . . . . . . 10 |
90 | 83, 89 | sylibrd 168 | . . . . . . . . 9 |
91 | 90 | a1d 22 | . . . . . . . 8 DECID |
92 | 91 | necon1ddc 2414 | . . . . . . 7 DECID |
93 | 72, 80, 92 | mp2d 47 | . . . . . 6 |
94 | 69, 93 | breqtrrd 4010 | . . . . 5 |
95 | psmetge0 12971 | . . . . . . . . . . 11 PsMet | |
96 | 7, 21, 6, 95 | syl3anc 1228 | . . . . . . . . . 10 |
97 | 74, 23, 16, 96, 27 | xrlelttrd 9746 | . . . . . . . . 9 |
98 | 74, 16, 97 | xrltled 9735 | . . . . . . . 8 |
99 | ge0nemnf 9760 | . . . . . . . 8 | |
100 | 16, 98, 99 | syl2anc 409 | . . . . . . 7 |
101 | 16, 100 | jca 304 | . . . . . 6 |
102 | xrnemnf 9713 | . . . . . 6 | |
103 | 101, 102 | sylib 121 | . . . . 5 |
104 | 44, 94, 103 | mpjaodan 788 | . . . 4 |
105 | elblps 13030 | . . . . 5 PsMet | |
106 | 7, 9, 33, 105 | syl3anc 1228 | . . . 4 |
107 | 6, 104, 106 | mpbir2and 934 | . . 3 |
108 | 107 | ex 114 | . 2 |
109 | 108 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 wss 3116 class class class wbr 3982 cfv 5188 (class class class)co 5842 cr 7752 cc0 7753 caddc 7756 cpnf 7930 cmnf 7931 cxr 7932 clt 7933 cle 7934 cxne 9705 cxad 9706 PsMetcpsmet 12619 cbl 12622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-2 8916 df-xneg 9708 df-xadd 9709 df-psmet 12627 df-bl 12630 |
This theorem is referenced by: blss2ps 13046 ssblps 13065 |
Copyright terms: Public domain | W3C validator |