| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version | ||
| Description: One ball is contained in
another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14727 for
extended metrics, we have to assume the balls are a finite distance
apart, or else |
| Ref | Expression |
|---|---|
| xblss2ps.1 |
|
| xblss2ps.2 |
|
| xblss2ps.3 |
|
| xblss2ps.4 |
|
| xblss2ps.5 |
|
| xblss2ps.6 |
|
| xblss2ps.7 |
|
| Ref | Expression |
|---|---|
| xblss2ps |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2ps.1 |
. . . . . 6
| |
| 2 | xblss2ps.2 |
. . . . . 6
| |
| 3 | xblss2ps.4 |
. . . . . 6
| |
| 4 | elblps 14710 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
. . . . 5
|
| 6 | 5 | simprbda 383 |
. . . 4
|
| 7 | 1 | adantr 276 |
. . . . . . . 8
|
| 8 | xblss2ps.3 |
. . . . . . . . 9
| |
| 9 | 8 | adantr 276 |
. . . . . . . 8
|
| 10 | psmetcl 14646 |
. . . . . . . 8
| |
| 11 | 7, 9, 6, 10 | syl3anc 1249 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | xblss2ps.6 |
. . . . . . . . . 10
| |
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 14 | rexrd 8093 |
. . . . . . . 8
|
| 16 | 3 | adantr 276 |
. . . . . . . 8
|
| 17 | 15, 16 | xaddcld 9976 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | xblss2ps.5 |
. . . . . . 7
| |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
|
| 21 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 22 | psmetcl 14646 |
. . . . . . . . . 10
| |
| 23 | 7, 21, 6, 22 | syl3anc 1249 |
. . . . . . . . 9
|
| 24 | 15, 23 | xaddcld 9976 |
. . . . . . . 8
|
| 25 | psmettri2 14648 |
. . . . . . . . 9
| |
| 26 | 7, 21, 9, 6, 25 | syl13anc 1251 |
. . . . . . . 8
|
| 27 | 5 | simplbda 384 |
. . . . . . . . 9
|
| 28 | xltadd2 9969 |
. . . . . . . . . 10
| |
| 29 | 23, 16, 14, 28 | syl3anc 1249 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpbid 147 |
. . . . . . . 8
|
| 31 | 11, 24, 17, 26, 30 | xrlelttrd 9902 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 34 | 16 | xnegcld 9947 |
. . . . . . . . . 10
|
| 35 | 33, 34 | xaddcld 9976 |
. . . . . . . . 9
|
| 36 | xblss2ps.7 |
. . . . . . . . . 10
| |
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | xleadd1a 9965 |
. . . . . . . . 9
| |
| 39 | 15, 35, 16, 37, 38 | syl31anc 1252 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | xnpcan 9964 |
. . . . . . . 8
| |
| 42 | 33, 41 | sylan 283 |
. . . . . . 7
|
| 43 | 40, 42 | breqtrd 4060 |
. . . . . 6
|
| 44 | 12, 18, 20, 32, 43 | xrltletrd 9903 |
. . . . 5
|
| 45 | 11 | adantr 276 |
. . . . . . 7
|
| 46 | 13 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | simpll 527 |
. . . . . . . . . 10
| |
| 48 | simplr 528 |
. . . . . . . . . . 11
| |
| 49 | simpr 110 |
. . . . . . . . . . . 12
| |
| 50 | 49 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 51 | 48, 50 | eleqtrd 2275 |
. . . . . . . . . 10
|
| 52 | xblpnfps 14718 |
. . . . . . . . . . . 12
| |
| 53 | 1, 2, 52 | syl2anc 411 |
. . . . . . . . . . 11
|
| 54 | 53 | simplbda 384 |
. . . . . . . . . 10
|
| 55 | 47, 51, 54 | syl2anc 411 |
. . . . . . . . 9
|
| 56 | 46, 55 | readdcld 8073 |
. . . . . . . 8
|
| 57 | 56 | rexrd 8093 |
. . . . . . 7
|
| 58 | pnfxr 8096 |
. . . . . . . 8
| |
| 59 | 58 | a1i 9 |
. . . . . . 7
|
| 60 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 61 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 62 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 63 | 6 | adantr 276 |
. . . . . . . . 9
|
| 64 | 60, 61, 62, 63, 25 | syl13anc 1251 |
. . . . . . . 8
|
| 65 | 46, 55 | rexaddd 9946 |
. . . . . . . 8
|
| 66 | 64, 65 | breqtrd 4060 |
. . . . . . 7
|
| 67 | ltpnf 9872 |
. . . . . . . 8
| |
| 68 | 56, 67 | syl 14 |
. . . . . . 7
|
| 69 | 45, 57, 59, 66, 68 | xrlelttrd 9902 |
. . . . . 6
|
| 70 | 19 | ad2antrr 488 |
. . . . . . . 8
|
| 71 | xrpnfdc 9934 |
. . . . . . . 8
| |
| 72 | 70, 71 | syl 14 |
. . . . . . 7
|
| 73 | 0xr 8090 |
. . . . . . . . . . 11
| |
| 74 | 73 | a1i 9 |
. . . . . . . . . 10
|
| 75 | psmetge0 14651 |
. . . . . . . . . . 11
| |
| 76 | 7, 21, 9, 75 | syl3anc 1249 |
. . . . . . . . . 10
|
| 77 | 74, 15, 35, 76, 37 | xrletrd 9904 |
. . . . . . . . 9
|
| 78 | ge0nemnf 9916 |
. . . . . . . . 9
| |
| 79 | 35, 77, 78 | syl2anc 411 |
. . . . . . . 8
|
| 80 | 79 | adantr 276 |
. . . . . . 7
|
| 81 | xaddmnf1 9940 |
. . . . . . . . . . . 12
| |
| 82 | 81 | ex 115 |
. . . . . . . . . . 11
|
| 83 | 70, 82 | syl 14 |
. . . . . . . . . 10
|
| 84 | xnegeq 9919 |
. . . . . . . . . . . . . 14
| |
| 85 | 49, 84 | syl 14 |
. . . . . . . . . . . . 13
|
| 86 | xnegpnf 9920 |
. . . . . . . . . . . . 13
| |
| 87 | 85, 86 | eqtrdi 2245 |
. . . . . . . . . . . 12
|
| 88 | 87 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 89 | 88 | eqeq1d 2205 |
. . . . . . . . . 10
|
| 90 | 83, 89 | sylibrd 169 |
. . . . . . . . 9
|
| 91 | 90 | a1d 22 |
. . . . . . . 8
|
| 92 | 91 | necon1ddc 2445 |
. . . . . . 7
|
| 93 | 72, 80, 92 | mp2d 47 |
. . . . . 6
|
| 94 | 69, 93 | breqtrrd 4062 |
. . . . 5
|
| 95 | psmetge0 14651 |
. . . . . . . . . . 11
| |
| 96 | 7, 21, 6, 95 | syl3anc 1249 |
. . . . . . . . . 10
|
| 97 | 74, 23, 16, 96, 27 | xrlelttrd 9902 |
. . . . . . . . 9
|
| 98 | 74, 16, 97 | xrltled 9891 |
. . . . . . . 8
|
| 99 | ge0nemnf 9916 |
. . . . . . . 8
| |
| 100 | 16, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 16, 100 | jca 306 |
. . . . . 6
|
| 102 | xrnemnf 9869 |
. . . . . 6
| |
| 103 | 101, 102 | sylib 122 |
. . . . 5
|
| 104 | 44, 94, 103 | mpjaodan 799 |
. . . 4
|
| 105 | elblps 14710 |
. . . . 5
| |
| 106 | 7, 9, 33, 105 | syl3anc 1249 |
. . . 4
|
| 107 | 6, 104, 106 | mpbir2and 946 |
. . 3
|
| 108 | 107 | ex 115 |
. 2
|
| 109 | 108 | ssrdv 3190 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-map 6718 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-2 9066 df-xneg 9864 df-xadd 9865 df-psmet 14175 df-bl 14178 |
| This theorem is referenced by: blss2ps 14726 ssblps 14745 |
| Copyright terms: Public domain | W3C validator |