| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version | ||
| Description: One ball is contained in
another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14994 for
extended metrics, we have to assume the balls are a finite distance
apart, or else |
| Ref | Expression |
|---|---|
| xblss2ps.1 |
|
| xblss2ps.2 |
|
| xblss2ps.3 |
|
| xblss2ps.4 |
|
| xblss2ps.5 |
|
| xblss2ps.6 |
|
| xblss2ps.7 |
|
| Ref | Expression |
|---|---|
| xblss2ps |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2ps.1 |
. . . . . 6
| |
| 2 | xblss2ps.2 |
. . . . . 6
| |
| 3 | xblss2ps.4 |
. . . . . 6
| |
| 4 | elblps 14977 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
. . . . 5
|
| 6 | 5 | simprbda 383 |
. . . 4
|
| 7 | 1 | adantr 276 |
. . . . . . . 8
|
| 8 | xblss2ps.3 |
. . . . . . . . 9
| |
| 9 | 8 | adantr 276 |
. . . . . . . 8
|
| 10 | psmetcl 14913 |
. . . . . . . 8
| |
| 11 | 7, 9, 6, 10 | syl3anc 1250 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | xblss2ps.6 |
. . . . . . . . . 10
| |
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 14 | rexrd 8157 |
. . . . . . . 8
|
| 16 | 3 | adantr 276 |
. . . . . . . 8
|
| 17 | 15, 16 | xaddcld 10041 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | xblss2ps.5 |
. . . . . . 7
| |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
|
| 21 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 22 | psmetcl 14913 |
. . . . . . . . . 10
| |
| 23 | 7, 21, 6, 22 | syl3anc 1250 |
. . . . . . . . 9
|
| 24 | 15, 23 | xaddcld 10041 |
. . . . . . . 8
|
| 25 | psmettri2 14915 |
. . . . . . . . 9
| |
| 26 | 7, 21, 9, 6, 25 | syl13anc 1252 |
. . . . . . . 8
|
| 27 | 5 | simplbda 384 |
. . . . . . . . 9
|
| 28 | xltadd2 10034 |
. . . . . . . . . 10
| |
| 29 | 23, 16, 14, 28 | syl3anc 1250 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpbid 147 |
. . . . . . . 8
|
| 31 | 11, 24, 17, 26, 30 | xrlelttrd 9967 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 34 | 16 | xnegcld 10012 |
. . . . . . . . . 10
|
| 35 | 33, 34 | xaddcld 10041 |
. . . . . . . . 9
|
| 36 | xblss2ps.7 |
. . . . . . . . . 10
| |
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | xleadd1a 10030 |
. . . . . . . . 9
| |
| 39 | 15, 35, 16, 37, 38 | syl31anc 1253 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | xnpcan 10029 |
. . . . . . . 8
| |
| 42 | 33, 41 | sylan 283 |
. . . . . . 7
|
| 43 | 40, 42 | breqtrd 4085 |
. . . . . 6
|
| 44 | 12, 18, 20, 32, 43 | xrltletrd 9968 |
. . . . 5
|
| 45 | 11 | adantr 276 |
. . . . . . 7
|
| 46 | 13 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | simpll 527 |
. . . . . . . . . 10
| |
| 48 | simplr 528 |
. . . . . . . . . . 11
| |
| 49 | simpr 110 |
. . . . . . . . . . . 12
| |
| 50 | 49 | oveq2d 5983 |
. . . . . . . . . . 11
|
| 51 | 48, 50 | eleqtrd 2286 |
. . . . . . . . . 10
|
| 52 | xblpnfps 14985 |
. . . . . . . . . . . 12
| |
| 53 | 1, 2, 52 | syl2anc 411 |
. . . . . . . . . . 11
|
| 54 | 53 | simplbda 384 |
. . . . . . . . . 10
|
| 55 | 47, 51, 54 | syl2anc 411 |
. . . . . . . . 9
|
| 56 | 46, 55 | readdcld 8137 |
. . . . . . . 8
|
| 57 | 56 | rexrd 8157 |
. . . . . . 7
|
| 58 | pnfxr 8160 |
. . . . . . . 8
| |
| 59 | 58 | a1i 9 |
. . . . . . 7
|
| 60 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 61 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 62 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 63 | 6 | adantr 276 |
. . . . . . . . 9
|
| 64 | 60, 61, 62, 63, 25 | syl13anc 1252 |
. . . . . . . 8
|
| 65 | 46, 55 | rexaddd 10011 |
. . . . . . . 8
|
| 66 | 64, 65 | breqtrd 4085 |
. . . . . . 7
|
| 67 | ltpnf 9937 |
. . . . . . . 8
| |
| 68 | 56, 67 | syl 14 |
. . . . . . 7
|
| 69 | 45, 57, 59, 66, 68 | xrlelttrd 9967 |
. . . . . 6
|
| 70 | 19 | ad2antrr 488 |
. . . . . . . 8
|
| 71 | xrpnfdc 9999 |
. . . . . . . 8
| |
| 72 | 70, 71 | syl 14 |
. . . . . . 7
|
| 73 | 0xr 8154 |
. . . . . . . . . . 11
| |
| 74 | 73 | a1i 9 |
. . . . . . . . . 10
|
| 75 | psmetge0 14918 |
. . . . . . . . . . 11
| |
| 76 | 7, 21, 9, 75 | syl3anc 1250 |
. . . . . . . . . 10
|
| 77 | 74, 15, 35, 76, 37 | xrletrd 9969 |
. . . . . . . . 9
|
| 78 | ge0nemnf 9981 |
. . . . . . . . 9
| |
| 79 | 35, 77, 78 | syl2anc 411 |
. . . . . . . 8
|
| 80 | 79 | adantr 276 |
. . . . . . 7
|
| 81 | xaddmnf1 10005 |
. . . . . . . . . . . 12
| |
| 82 | 81 | ex 115 |
. . . . . . . . . . 11
|
| 83 | 70, 82 | syl 14 |
. . . . . . . . . 10
|
| 84 | xnegeq 9984 |
. . . . . . . . . . . . . 14
| |
| 85 | 49, 84 | syl 14 |
. . . . . . . . . . . . 13
|
| 86 | xnegpnf 9985 |
. . . . . . . . . . . . 13
| |
| 87 | 85, 86 | eqtrdi 2256 |
. . . . . . . . . . . 12
|
| 88 | 87 | oveq2d 5983 |
. . . . . . . . . . 11
|
| 89 | 88 | eqeq1d 2216 |
. . . . . . . . . 10
|
| 90 | 83, 89 | sylibrd 169 |
. . . . . . . . 9
|
| 91 | 90 | a1d 22 |
. . . . . . . 8
|
| 92 | 91 | necon1ddc 2456 |
. . . . . . 7
|
| 93 | 72, 80, 92 | mp2d 47 |
. . . . . 6
|
| 94 | 69, 93 | breqtrrd 4087 |
. . . . 5
|
| 95 | psmetge0 14918 |
. . . . . . . . . . 11
| |
| 96 | 7, 21, 6, 95 | syl3anc 1250 |
. . . . . . . . . 10
|
| 97 | 74, 23, 16, 96, 27 | xrlelttrd 9967 |
. . . . . . . . 9
|
| 98 | 74, 16, 97 | xrltled 9956 |
. . . . . . . 8
|
| 99 | ge0nemnf 9981 |
. . . . . . . 8
| |
| 100 | 16, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 16, 100 | jca 306 |
. . . . . 6
|
| 102 | xrnemnf 9934 |
. . . . . 6
| |
| 103 | 101, 102 | sylib 122 |
. . . . 5
|
| 104 | 44, 94, 103 | mpjaodan 800 |
. . . 4
|
| 105 | elblps 14977 |
. . . . 5
| |
| 106 | 7, 9, 33, 105 | syl3anc 1250 |
. . . 4
|
| 107 | 6, 104, 106 | mpbir2and 947 |
. . 3
|
| 108 | 107 | ex 115 |
. 2
|
| 109 | 108 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-map 6760 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-2 9130 df-xneg 9929 df-xadd 9930 df-psmet 14420 df-bl 14423 |
| This theorem is referenced by: blss2ps 14993 ssblps 15012 |
| Copyright terms: Public domain | W3C validator |