| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xblss2ps | Unicode version | ||
| Description: One ball is contained in
another if the center-to-center distance is
less than the difference of the radii. In this version of blss2 14879 for
extended metrics, we have to assume the balls are a finite distance
apart, or else |
| Ref | Expression |
|---|---|
| xblss2ps.1 |
|
| xblss2ps.2 |
|
| xblss2ps.3 |
|
| xblss2ps.4 |
|
| xblss2ps.5 |
|
| xblss2ps.6 |
|
| xblss2ps.7 |
|
| Ref | Expression |
|---|---|
| xblss2ps |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xblss2ps.1 |
. . . . . 6
| |
| 2 | xblss2ps.2 |
. . . . . 6
| |
| 3 | xblss2ps.4 |
. . . . . 6
| |
| 4 | elblps 14862 |
. . . . . 6
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
. . . . 5
|
| 6 | 5 | simprbda 383 |
. . . 4
|
| 7 | 1 | adantr 276 |
. . . . . . . 8
|
| 8 | xblss2ps.3 |
. . . . . . . . 9
| |
| 9 | 8 | adantr 276 |
. . . . . . . 8
|
| 10 | psmetcl 14798 |
. . . . . . . 8
| |
| 11 | 7, 9, 6, 10 | syl3anc 1250 |
. . . . . . 7
|
| 12 | 11 | adantr 276 |
. . . . . 6
|
| 13 | xblss2ps.6 |
. . . . . . . . . 10
| |
| 14 | 13 | adantr 276 |
. . . . . . . . 9
|
| 15 | 14 | rexrd 8122 |
. . . . . . . 8
|
| 16 | 3 | adantr 276 |
. . . . . . . 8
|
| 17 | 15, 16 | xaddcld 10006 |
. . . . . . 7
|
| 18 | 17 | adantr 276 |
. . . . . 6
|
| 19 | xblss2ps.5 |
. . . . . . 7
| |
| 20 | 19 | ad2antrr 488 |
. . . . . 6
|
| 21 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 22 | psmetcl 14798 |
. . . . . . . . . 10
| |
| 23 | 7, 21, 6, 22 | syl3anc 1250 |
. . . . . . . . 9
|
| 24 | 15, 23 | xaddcld 10006 |
. . . . . . . 8
|
| 25 | psmettri2 14800 |
. . . . . . . . 9
| |
| 26 | 7, 21, 9, 6, 25 | syl13anc 1252 |
. . . . . . . 8
|
| 27 | 5 | simplbda 384 |
. . . . . . . . 9
|
| 28 | xltadd2 9999 |
. . . . . . . . . 10
| |
| 29 | 23, 16, 14, 28 | syl3anc 1250 |
. . . . . . . . 9
|
| 30 | 27, 29 | mpbid 147 |
. . . . . . . 8
|
| 31 | 11, 24, 17, 26, 30 | xrlelttrd 9932 |
. . . . . . 7
|
| 32 | 31 | adantr 276 |
. . . . . 6
|
| 33 | 19 | adantr 276 |
. . . . . . . . . 10
|
| 34 | 16 | xnegcld 9977 |
. . . . . . . . . 10
|
| 35 | 33, 34 | xaddcld 10006 |
. . . . . . . . 9
|
| 36 | xblss2ps.7 |
. . . . . . . . . 10
| |
| 37 | 36 | adantr 276 |
. . . . . . . . 9
|
| 38 | xleadd1a 9995 |
. . . . . . . . 9
| |
| 39 | 15, 35, 16, 37, 38 | syl31anc 1253 |
. . . . . . . 8
|
| 40 | 39 | adantr 276 |
. . . . . . 7
|
| 41 | xnpcan 9994 |
. . . . . . . 8
| |
| 42 | 33, 41 | sylan 283 |
. . . . . . 7
|
| 43 | 40, 42 | breqtrd 4070 |
. . . . . 6
|
| 44 | 12, 18, 20, 32, 43 | xrltletrd 9933 |
. . . . 5
|
| 45 | 11 | adantr 276 |
. . . . . . 7
|
| 46 | 13 | ad2antrr 488 |
. . . . . . . . 9
|
| 47 | simpll 527 |
. . . . . . . . . 10
| |
| 48 | simplr 528 |
. . . . . . . . . . 11
| |
| 49 | simpr 110 |
. . . . . . . . . . . 12
| |
| 50 | 49 | oveq2d 5960 |
. . . . . . . . . . 11
|
| 51 | 48, 50 | eleqtrd 2284 |
. . . . . . . . . 10
|
| 52 | xblpnfps 14870 |
. . . . . . . . . . . 12
| |
| 53 | 1, 2, 52 | syl2anc 411 |
. . . . . . . . . . 11
|
| 54 | 53 | simplbda 384 |
. . . . . . . . . 10
|
| 55 | 47, 51, 54 | syl2anc 411 |
. . . . . . . . 9
|
| 56 | 46, 55 | readdcld 8102 |
. . . . . . . 8
|
| 57 | 56 | rexrd 8122 |
. . . . . . 7
|
| 58 | pnfxr 8125 |
. . . . . . . 8
| |
| 59 | 58 | a1i 9 |
. . . . . . 7
|
| 60 | 1 | ad2antrr 488 |
. . . . . . . . 9
|
| 61 | 2 | ad2antrr 488 |
. . . . . . . . 9
|
| 62 | 8 | ad2antrr 488 |
. . . . . . . . 9
|
| 63 | 6 | adantr 276 |
. . . . . . . . 9
|
| 64 | 60, 61, 62, 63, 25 | syl13anc 1252 |
. . . . . . . 8
|
| 65 | 46, 55 | rexaddd 9976 |
. . . . . . . 8
|
| 66 | 64, 65 | breqtrd 4070 |
. . . . . . 7
|
| 67 | ltpnf 9902 |
. . . . . . . 8
| |
| 68 | 56, 67 | syl 14 |
. . . . . . 7
|
| 69 | 45, 57, 59, 66, 68 | xrlelttrd 9932 |
. . . . . 6
|
| 70 | 19 | ad2antrr 488 |
. . . . . . . 8
|
| 71 | xrpnfdc 9964 |
. . . . . . . 8
| |
| 72 | 70, 71 | syl 14 |
. . . . . . 7
|
| 73 | 0xr 8119 |
. . . . . . . . . . 11
| |
| 74 | 73 | a1i 9 |
. . . . . . . . . 10
|
| 75 | psmetge0 14803 |
. . . . . . . . . . 11
| |
| 76 | 7, 21, 9, 75 | syl3anc 1250 |
. . . . . . . . . 10
|
| 77 | 74, 15, 35, 76, 37 | xrletrd 9934 |
. . . . . . . . 9
|
| 78 | ge0nemnf 9946 |
. . . . . . . . 9
| |
| 79 | 35, 77, 78 | syl2anc 411 |
. . . . . . . 8
|
| 80 | 79 | adantr 276 |
. . . . . . 7
|
| 81 | xaddmnf1 9970 |
. . . . . . . . . . . 12
| |
| 82 | 81 | ex 115 |
. . . . . . . . . . 11
|
| 83 | 70, 82 | syl 14 |
. . . . . . . . . 10
|
| 84 | xnegeq 9949 |
. . . . . . . . . . . . . 14
| |
| 85 | 49, 84 | syl 14 |
. . . . . . . . . . . . 13
|
| 86 | xnegpnf 9950 |
. . . . . . . . . . . . 13
| |
| 87 | 85, 86 | eqtrdi 2254 |
. . . . . . . . . . . 12
|
| 88 | 87 | oveq2d 5960 |
. . . . . . . . . . 11
|
| 89 | 88 | eqeq1d 2214 |
. . . . . . . . . 10
|
| 90 | 83, 89 | sylibrd 169 |
. . . . . . . . 9
|
| 91 | 90 | a1d 22 |
. . . . . . . 8
|
| 92 | 91 | necon1ddc 2454 |
. . . . . . 7
|
| 93 | 72, 80, 92 | mp2d 47 |
. . . . . 6
|
| 94 | 69, 93 | breqtrrd 4072 |
. . . . 5
|
| 95 | psmetge0 14803 |
. . . . . . . . . . 11
| |
| 96 | 7, 21, 6, 95 | syl3anc 1250 |
. . . . . . . . . 10
|
| 97 | 74, 23, 16, 96, 27 | xrlelttrd 9932 |
. . . . . . . . 9
|
| 98 | 74, 16, 97 | xrltled 9921 |
. . . . . . . 8
|
| 99 | ge0nemnf 9946 |
. . . . . . . 8
| |
| 100 | 16, 98, 99 | syl2anc 411 |
. . . . . . 7
|
| 101 | 16, 100 | jca 306 |
. . . . . 6
|
| 102 | xrnemnf 9899 |
. . . . . 6
| |
| 103 | 101, 102 | sylib 122 |
. . . . 5
|
| 104 | 44, 94, 103 | mpjaodan 800 |
. . . 4
|
| 105 | elblps 14862 |
. . . . 5
| |
| 106 | 7, 9, 33, 105 | syl3anc 1250 |
. . . 4
|
| 107 | 6, 104, 106 | mpbir2and 947 |
. . 3
|
| 108 | 107 | ex 115 |
. 2
|
| 109 | 108 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-map 6737 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-2 9095 df-xneg 9894 df-xadd 9895 df-psmet 14305 df-bl 14308 |
| This theorem is referenced by: blss2ps 14878 ssblps 14897 |
| Copyright terms: Public domain | W3C validator |