ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon1ddc GIF version

Theorem necon1ddc 2418
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 19-May-2018.)
Hypothesis
Ref Expression
necon1ddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝐶 = 𝐷)))
Assertion
Ref Expression
necon1ddc (𝜑 → (DECID 𝐴 = 𝐵 → (𝐶𝐷𝐴 = 𝐵)))

Proof of Theorem necon1ddc
StepHypRef Expression
1 df-ne 2341 . 2 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
2 necon1ddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐴𝐵𝐶 = 𝐷)))
32necon1bddc 2417 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (¬ 𝐶 = 𝐷𝐴 = 𝐵)))
41, 3syl7bi 164 1 (𝜑 → (DECID 𝐴 = 𝐵 → (𝐶𝐷𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  DECID wdc 829   = wceq 1348  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830  df-ne 2341
This theorem is referenced by:  xblss2ps  13198  xblss2  13199  lgsne0  13733
  Copyright terms: Public domain W3C validator