Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon3bii | Unicode version |
Description: Inference from equality to inequality. (Contributed by NM, 23-Feb-2005.) |
Ref | Expression |
---|---|
necon3bii.1 |
Ref | Expression |
---|---|
necon3bii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bii.1 | . . 3 | |
2 | 1 | necon3abii 2381 | . 2 |
3 | df-ne 2346 | . 2 | |
4 | 2, 3 | bitr4i 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wb 105 wceq 1353 wne 2345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 |
This theorem depends on definitions: df-bi 117 df-ne 2346 |
This theorem is referenced by: necom 2429 negne0bi 8204 |
Copyright terms: Public domain | W3C validator |