ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3abii Unicode version

Theorem necon3abii 2383
Description: Deduction from equality to inequality. (Contributed by NM, 9-Nov-2007.)
Hypothesis
Ref Expression
necon3abii.1  |-  ( A  =  B  <->  ph )
Assertion
Ref Expression
necon3abii  |-  ( A  =/=  B  <->  -.  ph )

Proof of Theorem necon3abii
StepHypRef Expression
1 df-ne 2348 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3abii.1 . 2  |-  ( A  =  B  <->  ph )
31, 2xchbinx 682 1  |-  ( A  =/=  B  <->  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  necon3bbii  2384  necon3bii  2385  nesym  2392  n0rf  3435  gcd0id  11974
  Copyright terms: Public domain W3C validator