| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | Unicode version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2209 |
. 2
| |
| 2 | 1 | necon3bii 2416 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1471 ax-gen 1473 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-ne 2379 |
| This theorem is referenced by: necomi 2463 necomd 2464 difprsn1 3783 difprsn2 3784 diftpsn3 3785 fndmdifcom 5709 fvpr1 5811 fvpr2 5812 fvpr1g 5813 fvtp1g 5815 fvtp2g 5816 fvtp3g 5817 fvtp2 5819 fvtp3 5820 netap 7401 2omotaplemap 7404 zltlen 9486 nn0lt2 9489 qltlen 9796 fzofzim 10349 flqeqceilz 10500 isprm2lem 12553 prm2orodd 12563 tridceq 16197 |
| Copyright terms: Public domain | W3C validator |