ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necom Unicode version

Theorem necom 2420
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
necom  |-  ( A  =/=  B  <->  B  =/=  A )

Proof of Theorem necom
StepHypRef Expression
1 eqcom 2167 . 2  |-  ( A  =  B  <->  B  =  A )
21necon3bii 2374 1  |-  ( A  =/=  B  <->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-ne 2337
This theorem is referenced by:  necomi  2421  necomd  2422  difprsn1  3712  difprsn2  3713  diftpsn3  3714  fndmdifcom  5591  fvpr1  5689  fvpr2  5690  fvpr1g  5691  fvtp1g  5693  fvtp2g  5694  fvtp3g  5695  fvtp2  5697  fvtp3  5698  zltlen  9269  nn0lt2  9272  qltlen  9578  fzofzim  10123  flqeqceilz  10253  isprm2lem  12048  prm2orodd  12058  tridceq  13935
  Copyright terms: Public domain W3C validator