| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > necom | Unicode version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
| Ref | Expression |
|---|---|
| necom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2207 |
. 2
| |
| 2 | 1 | necon3bii 2414 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1470 ax-gen 1472 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-ne 2377 |
| This theorem is referenced by: necomi 2461 necomd 2462 difprsn1 3772 difprsn2 3773 diftpsn3 3774 fndmdifcom 5686 fvpr1 5788 fvpr2 5789 fvpr1g 5790 fvtp1g 5792 fvtp2g 5793 fvtp3g 5794 fvtp2 5796 fvtp3 5797 netap 7366 2omotaplemap 7369 zltlen 9451 nn0lt2 9454 qltlen 9761 fzofzim 10312 flqeqceilz 10463 isprm2lem 12438 prm2orodd 12448 tridceq 15995 |
| Copyright terms: Public domain | W3C validator |