![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > necom | Unicode version |
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) |
Ref | Expression |
---|---|
necom |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqcom 2195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | necon3bii 2402 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-ne 2365 |
This theorem is referenced by: necomi 2449 necomd 2450 difprsn1 3757 difprsn2 3758 diftpsn3 3759 fndmdifcom 5664 fvpr1 5762 fvpr2 5763 fvpr1g 5764 fvtp1g 5766 fvtp2g 5767 fvtp3g 5768 fvtp2 5770 fvtp3 5771 netap 7314 2omotaplemap 7317 zltlen 9395 nn0lt2 9398 qltlen 9705 fzofzim 10255 flqeqceilz 10389 isprm2lem 12254 prm2orodd 12264 tridceq 15546 |
Copyright terms: Public domain | W3C validator |