ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necom Unicode version

Theorem necom 2484
Description: Commutation of inequality. (Contributed by NM, 14-May-1999.)
Assertion
Ref Expression
necom  |-  ( A  =/=  B  <->  B  =/=  A )

Proof of Theorem necom
StepHypRef Expression
1 eqcom 2231 . 2  |-  ( A  =  B  <->  B  =  A )
21necon3bii 2438 1  |-  ( A  =/=  B  <->  B  =/=  A )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    =/= wne 2400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-cleq 2222  df-ne 2401
This theorem is referenced by:  necomi  2485  necomd  2486  difprsn1  3807  difprsn2  3808  diftpsn3  3809  fndmdifcom  5741  fvpr1  5843  fvpr2  5844  fvpr1g  5845  fvtp1g  5847  fvtp2g  5848  fvtp3g  5849  fvtp2  5851  fvtp3  5852  netap  7440  2omotaplemap  7443  zltlen  9525  nn0lt2  9528  qltlen  9835  fzofzim  10388  flqeqceilz  10540  isprm2lem  12638  prm2orodd  12648  tridceq  16424
  Copyright terms: Public domain W3C validator