| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > necom | Unicode version | ||
| Description: Commutation of inequality. (Contributed by NM, 14-May-1999.) | 
| Ref | Expression | 
|---|---|
| necom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom 2198 | 
. 2
 | |
| 2 | 1 | necon3bii 2405 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-ne 2368 | 
| This theorem is referenced by: necomi 2452 necomd 2453 difprsn1 3761 difprsn2 3762 diftpsn3 3763 fndmdifcom 5668 fvpr1 5766 fvpr2 5767 fvpr1g 5768 fvtp1g 5770 fvtp2g 5771 fvtp3g 5772 fvtp2 5774 fvtp3 5775 netap 7321 2omotaplemap 7324 zltlen 9404 nn0lt2 9407 qltlen 9714 fzofzim 10264 flqeqceilz 10410 isprm2lem 12284 prm2orodd 12294 tridceq 15700 | 
| Copyright terms: Public domain | W3C validator |