ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3abid Unicode version

Theorem necon3abid 2386
Description: Deduction from equality to inequality. (Contributed by NM, 21-Mar-2007.)
Hypothesis
Ref Expression
necon3abid.1  |-  ( ph  ->  ( A  =  B  <->  ps ) )
Assertion
Ref Expression
necon3abid  |-  ( ph  ->  ( A  =/=  B  <->  -. 
ps ) )

Proof of Theorem necon3abid
StepHypRef Expression
1 df-ne 2348 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 necon3abid.1 . . 3  |-  ( ph  ->  ( A  =  B  <->  ps ) )
32notbid 667 . 2  |-  ( ph  ->  ( -.  A  =  B  <->  -.  ps )
)
41, 3bitrid 192 1  |-  ( ph  ->  ( A  =/=  B  <->  -. 
ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    = wceq 1353    =/= wne 2347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615
This theorem depends on definitions:  df-bi 117  df-ne 2348
This theorem is referenced by:  necon3bbid  2387  fndmdif  5623  expnegap0  10530  gcdn0gt0  11981  cncongr2  12106  mulgnegnn  12998
  Copyright terms: Public domain W3C validator