ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4abiddc Unicode version

Theorem necon4abiddc 2409
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 18-May-2018.)
Hypothesis
Ref Expression
necon4abiddc.1  |-  ( ph  ->  (DECID  A  =  B  -> 
(DECID 
ps  ->  ( A  =/= 
B  <->  -.  ps )
) ) )
Assertion
Ref Expression
necon4abiddc  |-  ( ph  ->  (DECID  A  =  B  -> 
(DECID 
ps  ->  ( A  =  B  <->  ps ) ) ) )

Proof of Theorem necon4abiddc
StepHypRef Expression
1 necon4abiddc.1 . . 3  |-  ( ph  ->  (DECID  A  =  B  -> 
(DECID 
ps  ->  ( A  =/= 
B  <->  -.  ps )
) ) )
2 df-ne 2337 . . . 4  |-  ( A  =/=  B  <->  -.  A  =  B )
32bibi1i 227 . . 3  |-  ( ( A  =/=  B  <->  -.  ps )  <->  ( -.  A  =  B  <->  -.  ps ) )
41, 3syl8ib 165 . 2  |-  ( ph  ->  (DECID  A  =  B  -> 
(DECID 
ps  ->  ( -.  A  =  B  <->  -.  ps )
) ) )
54con4biddc 847 1  |-  ( ph  ->  (DECID  A  =  B  -> 
(DECID 
ps  ->  ( A  =  B  <->  ps ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104  DECID wdc 824    = wceq 1343    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-ne 2337
This theorem is referenced by:  necon4bbiddc  2410  necon4biddc  2411  lgsprme0  13583
  Copyright terms: Public domain W3C validator