ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bibi1i Unicode version

Theorem bibi1i 228
Description: Inference adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
bibi.a  |-  ( ph  <->  ps )
Assertion
Ref Expression
bibi1i  |-  ( (
ph 
<->  ch )  <->  ( ps  <->  ch ) )

Proof of Theorem bibi1i
StepHypRef Expression
1 bicom 140 . 2  |-  ( (
ph 
<->  ch )  <->  ( ch  <->  ph ) )
2 bibi.a . . 3  |-  ( ph  <->  ps )
32bibi2i 227 . 2  |-  ( ( ch  <->  ph )  <->  ( ch  <->  ps ) )
4 bicom 140 . 2  |-  ( ( ch  <->  ps )  <->  ( ps  <->  ch ) )
51, 3, 43bitri 206 1  |-  ( (
ph 
<->  ch )  <->  ( ps  <->  ch ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bibi12i  229  biadani  612  bilukdc  1396  sbrbis  1959  necon1abiddc  2407  necon1bbiddc  2408  necon4abiddc  2418  elrab3t  2890  ddifstab  3265  ssequn1  3303  asymref  5006
  Copyright terms: Public domain W3C validator