Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4abiddc GIF version

Theorem necon4abiddc 2379
 Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 18-May-2018.)
Hypothesis
Ref Expression
necon4abiddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴𝐵 ↔ ¬ 𝜓))))
Assertion
Ref Expression
necon4abiddc (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵𝜓))))

Proof of Theorem necon4abiddc
StepHypRef Expression
1 necon4abiddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴𝐵 ↔ ¬ 𝜓))))
2 df-ne 2307 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32bibi1i 227 . . 3 ((𝐴𝐵 ↔ ¬ 𝜓) ↔ (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓))
41, 3syl8ib 165 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓))))
54con4biddc 842 1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 104  DECID wdc 819   = wceq 1331   ≠ wne 2306 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698 This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-ne 2307 This theorem is referenced by:  necon4bbiddc  2380  necon4biddc  2381
 Copyright terms: Public domain W3C validator