Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > necon4abiddc | GIF version |
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 18-May-2018.) |
Ref | Expression |
---|---|
necon4abiddc.1 | ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)))) |
Ref | Expression |
---|---|
necon4abiddc | ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵 ↔ 𝜓)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon4abiddc.1 | . . 3 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)))) | |
2 | df-ne 2341 | . . . 4 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
3 | 2 | bibi1i 227 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ↔ ¬ 𝜓) ↔ (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)) |
4 | 1, 3 | syl8ib 165 | . 2 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓)))) |
5 | 4 | con4biddc 852 | 1 ⊢ (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵 ↔ 𝜓)))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 104 DECID wdc 829 = wceq 1348 ≠ wne 2340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-ne 2341 |
This theorem is referenced by: necon4bbiddc 2414 necon4biddc 2415 lgsprme0 13737 |
Copyright terms: Public domain | W3C validator |