ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon4abiddc GIF version

Theorem necon4abiddc 2409
Description: Contrapositive law deduction for inequality. (Contributed by Jim Kingdon, 18-May-2018.)
Hypothesis
Ref Expression
necon4abiddc.1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴𝐵 ↔ ¬ 𝜓))))
Assertion
Ref Expression
necon4abiddc (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵𝜓))))

Proof of Theorem necon4abiddc
StepHypRef Expression
1 necon4abiddc.1 . . 3 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴𝐵 ↔ ¬ 𝜓))))
2 df-ne 2337 . . . 4 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
32bibi1i 227 . . 3 ((𝐴𝐵 ↔ ¬ 𝜓) ↔ (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓))
41, 3syl8ib 165 . 2 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (¬ 𝐴 = 𝐵 ↔ ¬ 𝜓))))
54con4biddc 847 1 (𝜑 → (DECID 𝐴 = 𝐵 → (DECID 𝜓 → (𝐴 = 𝐵𝜓))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 104  DECID wdc 824   = wceq 1343  wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-ne 2337
This theorem is referenced by:  necon4bbiddc  2410  necon4biddc  2411  lgsprme0  13583
  Copyright terms: Public domain W3C validator