ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nelelne Unicode version

Theorem nelelne 2428
Description: Two classes are different if they don't belong to the same class. (Contributed by Rodolfo Medina, 17-Oct-2010.) (Proof shortened by AV, 10-May-2020.)
Assertion
Ref Expression
nelelne  |-  ( -.  A  e.  B  -> 
( C  e.  B  ->  C  =/=  A ) )

Proof of Theorem nelelne
StepHypRef Expression
1 nelne2 2427 . 2  |-  ( ( C  e.  B  /\  -.  A  e.  B
)  ->  C  =/=  A )
21expcom 115 1  |-  ( -.  A  e.  B  -> 
( C  e.  B  ->  C  =/=  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    e. wcel 2136    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-17 1514  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-clel 2161  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator