ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfne Unicode version

Theorem nfne 2429
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1  |-  F/_ x A
nfne.2  |-  F/_ x B
Assertion
Ref Expression
nfne  |-  F/ x  A  =/=  B

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2337 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 nfne.1 . . . 4  |-  F/_ x A
3 nfne.2 . . . 4  |-  F/_ x B
42, 3nfeq 2316 . . 3  |-  F/ x  A  =  B
54nfn 1646 . 2  |-  F/ x  -.  A  =  B
61, 5nfxfr 1462 1  |-  F/ x  A  =/=  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1343   F/wnf 1448   F/_wnfc 2295    =/= wne 2336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator