ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfne Unicode version

Theorem nfne 2450
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfne.1  |-  F/_ x A
nfne.2  |-  F/_ x B
Assertion
Ref Expression
nfne  |-  F/ x  A  =/=  B

Proof of Theorem nfne
StepHypRef Expression
1 df-ne 2358 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 nfne.1 . . . 4  |-  F/_ x A
3 nfne.2 . . . 4  |-  F/_ x B
42, 3nfeq 2337 . . 3  |-  F/ x  A  =  B
54nfn 1668 . 2  |-  F/ x  -.  A  =  B
61, 5nfxfr 1484 1  |-  F/ x  A  =/=  B
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1363   F/wnf 1470   F/_wnfc 2316    =/= wne 2357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator