ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf5d Unicode version

Theorem nf5d 2025
Description: Deduce that  x is not free in  ps in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nf5d.1  |-  F/ x ph
nf5d.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
nf5d  |-  ( ph  ->  F/ x ps )

Proof of Theorem nf5d
StepHypRef Expression
1 nf5d.1 . . 3  |-  F/ x ph
2 nf5d.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
31, 2alrimi 1522 . 2  |-  ( ph  ->  A. x ( ps 
->  A. x ps )
)
4 nf5-1 2024 . 2  |-  ( A. x ( ps  ->  A. x ps )  ->  F/ x ps )
53, 4syl 14 1  |-  ( ph  ->  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351   F/wnf 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-4 1510  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  nfabdw  2338
  Copyright terms: Public domain W3C validator