Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf5d | Unicode version |
Description: Deduce that is not free in in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf5d.1 | |
nf5d.2 |
Ref | Expression |
---|---|
nf5d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5d.1 | . . 3 | |
2 | nf5d.2 | . . 3 | |
3 | 1, 2 | alrimi 1515 | . 2 |
4 | nf5-1 2017 | . 2 | |
5 | 3, 4 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1346 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: nfabdw 2331 |
Copyright terms: Public domain | W3C validator |