ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nf5-1 Unicode version

Theorem nf5-1 2036
Description: One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.)
Assertion
Ref Expression
nf5-1  |-  ( A. x ( ph  ->  A. x ph )  ->  F/ x ph )

Proof of Theorem nf5-1
StepHypRef Expression
1 exim 1610 . . 3  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  E. x A. x ph ) )
2 hbe1a 2035 . . 3  |-  ( E. x A. x ph  ->  A. x ph )
31, 2syl6 33 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( E. x ph  ->  A. x ph )
)
43nfd2 2034 1  |-  ( A. x ( ph  ->  A. x ph )  ->  F/ x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   F/wnf 1471   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  nf5d  2037
  Copyright terms: Public domain W3C validator