Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nf5d | GIF version |
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf5d.1 | ⊢ Ⅎ𝑥𝜑 |
nf5d.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nf5d | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nf5d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | alrimi 1510 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
4 | nf5-1 2012 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → Ⅎ𝑥𝜓) | |
5 | 3, 4 | syl 14 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 Ⅎwnf 1448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: nfabdw 2327 |
Copyright terms: Public domain | W3C validator |