![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > notnotnot | GIF version |
Description: Triple negation. (Contributed by Jim Kingdon, 28-Jul-2018.) |
Ref | Expression |
---|---|
notnotnot | ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 595 | . . 3 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | con3i 598 | . 2 ⊢ (¬ ¬ ¬ 𝜑 → ¬ 𝜑) |
3 | notnot 595 | . 2 ⊢ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) | |
4 | 2, 3 | impbii 125 | 1 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: stabnot 779 testbitestn 862 |
Copyright terms: Public domain | W3C validator |