| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > notnotnot | GIF version | ||
| Description: Triple negation is equivalent to negation. (Contributed by Jim Kingdon, 28-Jul-2018.) |
| Ref | Expression |
|---|---|
| notnotnot | ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 630 | . . 3 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | 1 | con3i 633 | . 2 ⊢ (¬ ¬ ¬ 𝜑 → ¬ 𝜑) |
| 3 | notnot 630 | . 2 ⊢ (¬ 𝜑 → ¬ ¬ ¬ 𝜑) | |
| 4 | 2, 3 | impbii 126 | 1 ⊢ (¬ ¬ ¬ 𝜑 ↔ ¬ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stabnot 834 dcnnOLD 850 bj-nnsn 15379 |
| Copyright terms: Public domain | W3C validator |