ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  con3rr3 Unicode version

Theorem con3rr3 628
Description: Rotate through consequent right. (Contributed by Wolf Lammen, 3-Nov-2013.)
Hypothesis
Ref Expression
con3rr3.1  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
con3rr3  |-  ( -. 
ch  ->  ( ph  ->  -. 
ps ) )

Proof of Theorem con3rr3
StepHypRef Expression
1 con3rr3.1 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
21con3d 626 . 2  |-  ( ph  ->  ( -.  ch  ->  -. 
ps ) )
32com12 30 1  |-  ( -. 
ch  ->  ( ph  ->  -. 
ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by:  imnan  685  snnen2og  6837  bj-nnim  13770
  Copyright terms: Public domain W3C validator