ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orcanai Unicode version

Theorem orcanai 918
Description: Change disjunction in consequent to conjunction in antecedent. (Contributed by NM, 8-Jun-1994.)
Hypothesis
Ref Expression
orcanai.1  |-  ( ph  ->  ( ps  \/  ch ) )
Assertion
Ref Expression
orcanai  |-  ( (
ph  /\  -.  ps )  ->  ch )

Proof of Theorem orcanai
StepHypRef Expression
1 orcanai.1 . . 3  |-  ( ph  ->  ( ps  \/  ch ) )
21ord 714 . 2  |-  ( ph  ->  ( -.  ps  ->  ch ) )
32imp 123 1  |-  ( (
ph  /\  -.  ps )  ->  ch )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  fsumsplit  11348  pcgcd  12260  lgsdir2  13574
  Copyright terms: Public domain W3C validator