ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit Unicode version

Theorem fsumsplit 11417
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplit.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplit.3  |-  ( ph  ->  U  e.  Fin )
fsumsplit.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplit  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    ph, k    U, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun1 3300 . . . . 5  |-  A  C_  ( A  u.  B
)
2 fsumsplit.2 . . . . 5  |-  ( ph  ->  U  =  ( A  u.  B ) )
31, 2sseqtrrid 3208 . . . 4  |-  ( ph  ->  A  C_  U )
4 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  x  e.  A )
54orcd 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
6 fsumsplit.1 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
7 disjel 3479 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  =  (/)  /\  x  e.  A )  ->  -.  x  e.  B )
87ex 115 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  (/)  ->  ( x  e.  A  ->  -.  x  e.  B )
)
98con2d 624 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  (/)  ->  ( x  e.  B  ->  -.  x  e.  A )
)
109imp 124 . . . . . . . . . 10  |-  ( ( ( A  i^i  B
)  =  (/)  /\  x  e.  B )  ->  -.  x  e.  A )
116, 10sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  -.  x  e.  A )
1211adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  B )  ->  -.  x  e.  A )
1312olcd 734 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  B )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
142eleq2d 2247 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  U  <->  x  e.  ( A  u.  B ) ) )
1514biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  U )  ->  x  e.  ( A  u.  B
) )
16 elun 3278 . . . . . . . 8  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
1715, 16sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  x  e.  B )
)
185, 13, 17mpjaodan 798 . . . . . 6  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
19 df-dc 835 . . . . . 6  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
2018, 19sylibr 134 . . . . 5  |-  ( (
ph  /\  x  e.  U )  -> DECID  x  e.  A
)
2120ralrimiva 2550 . . . 4  |-  ( ph  ->  A. x  e.  U DECID  x  e.  A )
223sselda 3157 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
23 fsumsplit.4 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
2422, 23syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2524ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
26 fsumsplit.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
2726olcd 734 . . . 4  |-  ( ph  ->  ( ( 0  e.  ZZ  /\  U  C_  ( ZZ>= `  0 )  /\  A. x  e.  (
ZZ>= `  0 )DECID  x  e.  U )  \/  U  e.  Fin ) )
283, 21, 25, 27isumss2 11403 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
29 ssun2 3301 . . . . 5  |-  B  C_  ( A  u.  B
)
3029, 2sseqtrrid 3208 . . . 4  |-  ( ph  ->  B  C_  U )
316ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  ( A  i^i  B )  =  (/) )
3231, 7sylancom 420 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  -.  x  e.  B )
3332olcd 734 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  (
x  e.  B  \/  -.  x  e.  B
) )
3417orcanai 928 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  -.  x  e.  A )  ->  x  e.  B )
3534orcd 733 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  -.  x  e.  A )  ->  ( x  e.  B  \/  -.  x  e.  B
) )
3633, 35, 18mpjaodan 798 . . . . . 6  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  B  \/  -.  x  e.  B
) )
37 df-dc 835 . . . . . 6  |-  (DECID  x  e.  B  <->  ( x  e.  B  \/  -.  x  e.  B ) )
3836, 37sylibr 134 . . . . 5  |-  ( (
ph  /\  x  e.  U )  -> DECID  x  e.  B
)
3938ralrimiva 2550 . . . 4  |-  ( ph  ->  A. x  e.  U DECID  x  e.  B )
4030sselda 3157 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
4140, 23syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
4241ralrimiva 2550 . . . 4  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
4330, 39, 42, 27isumss2 11403 . . 3  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
4428, 43oveq12d 5895 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
45 0cnd 7952 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  0  e.  CC )
46 eleq1w 2238 . . . . . 6  |-  ( x  =  k  ->  (
x  e.  A  <->  k  e.  A ) )
4746dcbid 838 . . . . 5  |-  ( x  =  k  ->  (DECID  x  e.  A  <-> DECID  k  e.  A )
)
4821adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  A. x  e.  U DECID  x  e.  A
)
49 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  U )
5047, 48, 49rspcdva 2848 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  A
)
5123, 45, 50ifcldcd 3572 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
52 eleq1w 2238 . . . . . 6  |-  ( x  =  k  ->  (
x  e.  B  <->  k  e.  B ) )
5352dcbid 838 . . . . 5  |-  ( x  =  k  ->  (DECID  x  e.  B  <-> DECID  k  e.  B )
)
5439adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  A. x  e.  U DECID  x  e.  B
)
5553, 54, 49rspcdva 2848 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  B
)
5623, 45, 55ifcldcd 3572 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
5726, 51, 56fsumadd 11416 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
582eleq2d 2247 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
59 elun 3278 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
6058, 59bitrdi 196 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
6160biimpa 296 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
62 iftrue 3541 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
6362adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
64 noel 3428 . . . . . . . . . . 11  |-  -.  k  e.  (/)
656eleq2d 2247 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
66 elin 3320 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
6765, 66bitr3di 195 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
6864, 67mtbii 674 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
69 imnan 690 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
7068, 69sylibr 134 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
7170imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
7271iffalsed 3546 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
7363, 72oveq12d 5895 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
7424addid1d 8108 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
7573, 74eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
7670con2d 624 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
7776imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
7877iffalsed 3546 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
79 iftrue 3541 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
8079adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
8178, 80oveq12d 5895 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  C ) )
8241addid2d 8109 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
0  +  C )  =  C )
8381, 82eqtrd 2210 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
8475, 83jaodan 797 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  C )
8561, 84syldan 282 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
8685sumeq2dv 11378 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  sum_ k  e.  U  C )
8744, 57, 863eqtr2rd 2217 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    u. cun 3129    i^i cin 3130    C_ wss 3131   (/)c0 3424   ifcif 3536   ` cfv 5218  (class class class)co 5877   Fincfn 6742   CCcc 7811   0cc0 7813    + caddc 7816   ZZcz 9255   ZZ>=cuz 9530   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  fsumsplitf  11418  sumpr  11423  sumtp  11424  fsumm1  11426  fsum1p  11428  fsumsplitsnun  11429  fsum2dlemstep  11444  fsumconst  11464  fsumlessfi  11470  fsumabs  11475  fsumiun  11487  mertenslemi1  11545  fsumcncntop  14095  cvgcmp2nlemabs  14819
  Copyright terms: Public domain W3C validator