| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumsplit | Unicode version | ||
| Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsumsplit.1 |
|
| fsumsplit.2 |
|
| fsumsplit.3 |
|
| fsumsplit.4 |
|
| Ref | Expression |
|---|---|
| fsumsplit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 3344 |
. . . . 5
| |
| 2 | fsumsplit.2 |
. . . . 5
| |
| 3 | 1, 2 | sseqtrrid 3252 |
. . . 4
|
| 4 | simpr 110 |
. . . . . . . 8
| |
| 5 | 4 | orcd 735 |
. . . . . . 7
|
| 6 | fsumsplit.1 |
. . . . . . . . . 10
| |
| 7 | disjel 3523 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | ex 115 |
. . . . . . . . . . . 12
|
| 9 | 8 | con2d 625 |
. . . . . . . . . . 11
|
| 10 | 9 | imp 124 |
. . . . . . . . . 10
|
| 11 | 6, 10 | sylan 283 |
. . . . . . . . 9
|
| 12 | 11 | adantlr 477 |
. . . . . . . 8
|
| 13 | 12 | olcd 736 |
. . . . . . 7
|
| 14 | 2 | eleq2d 2277 |
. . . . . . . . 9
|
| 15 | 14 | biimpa 296 |
. . . . . . . 8
|
| 16 | elun 3322 |
. . . . . . . 8
| |
| 17 | 15, 16 | sylib 122 |
. . . . . . 7
|
| 18 | 5, 13, 17 | mpjaodan 800 |
. . . . . 6
|
| 19 | df-dc 837 |
. . . . . 6
| |
| 20 | 18, 19 | sylibr 134 |
. . . . 5
|
| 21 | 20 | ralrimiva 2581 |
. . . 4
|
| 22 | 3 | sselda 3201 |
. . . . . 6
|
| 23 | fsumsplit.4 |
. . . . . 6
| |
| 24 | 22, 23 | syldan 282 |
. . . . 5
|
| 25 | 24 | ralrimiva 2581 |
. . . 4
|
| 26 | fsumsplit.3 |
. . . . 5
| |
| 27 | 26 | olcd 736 |
. . . 4
|
| 28 | 3, 21, 25, 27 | isumss2 11819 |
. . 3
|
| 29 | ssun2 3345 |
. . . . 5
| |
| 30 | 29, 2 | sseqtrrid 3252 |
. . . 4
|
| 31 | 6 | ad2antrr 488 |
. . . . . . . . 9
|
| 32 | 31, 7 | sylancom 420 |
. . . . . . . 8
|
| 33 | 32 | olcd 736 |
. . . . . . 7
|
| 34 | 17 | orcanai 930 |
. . . . . . . 8
|
| 35 | 34 | orcd 735 |
. . . . . . 7
|
| 36 | 33, 35, 18 | mpjaodan 800 |
. . . . . 6
|
| 37 | df-dc 837 |
. . . . . 6
| |
| 38 | 36, 37 | sylibr 134 |
. . . . 5
|
| 39 | 38 | ralrimiva 2581 |
. . . 4
|
| 40 | 30 | sselda 3201 |
. . . . . 6
|
| 41 | 40, 23 | syldan 282 |
. . . . 5
|
| 42 | 41 | ralrimiva 2581 |
. . . 4
|
| 43 | 30, 39, 42, 27 | isumss2 11819 |
. . 3
|
| 44 | 28, 43 | oveq12d 5985 |
. 2
|
| 45 | 0cnd 8100 |
. . . 4
| |
| 46 | eleq1w 2268 |
. . . . . 6
| |
| 47 | 46 | dcbid 840 |
. . . . 5
|
| 48 | 21 | adantr 276 |
. . . . 5
|
| 49 | simpr 110 |
. . . . 5
| |
| 50 | 47, 48, 49 | rspcdva 2889 |
. . . 4
|
| 51 | 23, 45, 50 | ifcldcd 3617 |
. . 3
|
| 52 | eleq1w 2268 |
. . . . . 6
| |
| 53 | 52 | dcbid 840 |
. . . . 5
|
| 54 | 39 | adantr 276 |
. . . . 5
|
| 55 | 53, 54, 49 | rspcdva 2889 |
. . . 4
|
| 56 | 23, 45, 55 | ifcldcd 3617 |
. . 3
|
| 57 | 26, 51, 56 | fsumadd 11832 |
. 2
|
| 58 | 2 | eleq2d 2277 |
. . . . . 6
|
| 59 | elun 3322 |
. . . . . 6
| |
| 60 | 58, 59 | bitrdi 196 |
. . . . 5
|
| 61 | 60 | biimpa 296 |
. . . 4
|
| 62 | iftrue 3584 |
. . . . . . . 8
| |
| 63 | 62 | adantl 277 |
. . . . . . 7
|
| 64 | noel 3472 |
. . . . . . . . . . 11
| |
| 65 | 6 | eleq2d 2277 |
. . . . . . . . . . . 12
|
| 66 | elin 3364 |
. . . . . . . . . . . 12
| |
| 67 | 65, 66 | bitr3di 195 |
. . . . . . . . . . 11
|
| 68 | 64, 67 | mtbii 676 |
. . . . . . . . . 10
|
| 69 | imnan 692 |
. . . . . . . . . 10
| |
| 70 | 68, 69 | sylibr 134 |
. . . . . . . . 9
|
| 71 | 70 | imp 124 |
. . . . . . . 8
|
| 72 | 71 | iffalsed 3589 |
. . . . . . 7
|
| 73 | 63, 72 | oveq12d 5985 |
. . . . . 6
|
| 74 | 24 | addridd 8256 |
. . . . . 6
|
| 75 | 73, 74 | eqtrd 2240 |
. . . . 5
|
| 76 | 70 | con2d 625 |
. . . . . . . . 9
|
| 77 | 76 | imp 124 |
. . . . . . . 8
|
| 78 | 77 | iffalsed 3589 |
. . . . . . 7
|
| 79 | iftrue 3584 |
. . . . . . . 8
| |
| 80 | 79 | adantl 277 |
. . . . . . 7
|
| 81 | 78, 80 | oveq12d 5985 |
. . . . . 6
|
| 82 | 41 | addlidd 8257 |
. . . . . 6
|
| 83 | 81, 82 | eqtrd 2240 |
. . . . 5
|
| 84 | 75, 83 | jaodan 799 |
. . . 4
|
| 85 | 61, 84 | syldan 282 |
. . 3
|
| 86 | 85 | sumeq2dv 11794 |
. 2
|
| 87 | 44, 57, 86 | 3eqtr2rd 2247 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 |
| This theorem is referenced by: fsumsplitf 11834 sumpr 11839 sumtp 11840 fsumm1 11842 fsum1p 11844 fsumsplitsnun 11845 fsum2dlemstep 11860 fsumconst 11880 fsumlessfi 11886 fsumabs 11891 fsumiun 11903 mertenslemi1 11961 bitsinv1 12388 fsumcncntop 15154 dvmptfsum 15312 perfectlem2 15587 lgsquadlem2 15670 cvgcmp2nlemabs 16173 |
| Copyright terms: Public domain | W3C validator |