ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumsplit Unicode version

Theorem fsumsplit 11572
Description: Split a sum into two parts. (Contributed by Mario Carneiro, 18-Aug-2013.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumsplit.1  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
fsumsplit.2  |-  ( ph  ->  U  =  ( A  u.  B ) )
fsumsplit.3  |-  ( ph  ->  U  e.  Fin )
fsumsplit.4  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
Assertion
Ref Expression
fsumsplit  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Distinct variable groups:    A, k    B, k    ph, k    U, k
Allowed substitution hint:    C( k)

Proof of Theorem fsumsplit
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssun1 3326 . . . . 5  |-  A  C_  ( A  u.  B
)
2 fsumsplit.2 . . . . 5  |-  ( ph  ->  U  =  ( A  u.  B ) )
31, 2sseqtrrid 3234 . . . 4  |-  ( ph  ->  A  C_  U )
4 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  x  e.  A )
54orcd 734 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
6 fsumsplit.1 . . . . . . . . . 10  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
7 disjel 3505 . . . . . . . . . . . . 13  |-  ( ( ( A  i^i  B
)  =  (/)  /\  x  e.  A )  ->  -.  x  e.  B )
87ex 115 . . . . . . . . . . . 12  |-  ( ( A  i^i  B )  =  (/)  ->  ( x  e.  A  ->  -.  x  e.  B )
)
98con2d 625 . . . . . . . . . . 11  |-  ( ( A  i^i  B )  =  (/)  ->  ( x  e.  B  ->  -.  x  e.  A )
)
109imp 124 . . . . . . . . . 10  |-  ( ( ( A  i^i  B
)  =  (/)  /\  x  e.  B )  ->  -.  x  e.  A )
116, 10sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  B )  ->  -.  x  e.  A )
1211adantlr 477 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  B )  ->  -.  x  e.  A )
1312olcd 735 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  B )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
142eleq2d 2266 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  U  <->  x  e.  ( A  u.  B ) ) )
1514biimpa 296 . . . . . . . 8  |-  ( (
ph  /\  x  e.  U )  ->  x  e.  ( A  u.  B
) )
16 elun 3304 . . . . . . . 8  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
1715, 16sylib 122 . . . . . . 7  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  x  e.  B )
)
185, 13, 17mpjaodan 799 . . . . . 6  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  A  \/  -.  x  e.  A
) )
19 df-dc 836 . . . . . 6  |-  (DECID  x  e.  A  <->  ( x  e.  A  \/  -.  x  e.  A ) )
2018, 19sylibr 134 . . . . 5  |-  ( (
ph  /\  x  e.  U )  -> DECID  x  e.  A
)
2120ralrimiva 2570 . . . 4  |-  ( ph  ->  A. x  e.  U DECID  x  e.  A )
223sselda 3183 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  U )
23 fsumsplit.4 . . . . . 6  |-  ( (
ph  /\  k  e.  U )  ->  C  e.  CC )
2422, 23syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2524ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  A  C  e.  CC )
26 fsumsplit.3 . . . . 5  |-  ( ph  ->  U  e.  Fin )
2726olcd 735 . . . 4  |-  ( ph  ->  ( ( 0  e.  ZZ  /\  U  C_  ( ZZ>= `  0 )  /\  A. x  e.  (
ZZ>= `  0 )DECID  x  e.  U )  \/  U  e.  Fin ) )
283, 21, 25, 27isumss2 11558 . . 3  |-  ( ph  -> 
sum_ k  e.  A  C  =  sum_ k  e.  U  if ( k  e.  A ,  C ,  0 ) )
29 ssun2 3327 . . . . 5  |-  B  C_  ( A  u.  B
)
3029, 2sseqtrrid 3234 . . . 4  |-  ( ph  ->  B  C_  U )
316ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  ( A  i^i  B )  =  (/) )
3231, 7sylancom 420 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  -.  x  e.  B )
3332olcd 735 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  x  e.  A )  ->  (
x  e.  B  \/  -.  x  e.  B
) )
3417orcanai 929 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  U )  /\  -.  x  e.  A )  ->  x  e.  B )
3534orcd 734 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  U )  /\  -.  x  e.  A )  ->  ( x  e.  B  \/  -.  x  e.  B
) )
3633, 35, 18mpjaodan 799 . . . . . 6  |-  ( (
ph  /\  x  e.  U )  ->  (
x  e.  B  \/  -.  x  e.  B
) )
37 df-dc 836 . . . . . 6  |-  (DECID  x  e.  B  <->  ( x  e.  B  \/  -.  x  e.  B ) )
3836, 37sylibr 134 . . . . 5  |-  ( (
ph  /\  x  e.  U )  -> DECID  x  e.  B
)
3938ralrimiva 2570 . . . 4  |-  ( ph  ->  A. x  e.  U DECID  x  e.  B )
4030sselda 3183 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  k  e.  U )
4140, 23syldan 282 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  C  e.  CC )
4241ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  B  C  e.  CC )
4330, 39, 42, 27isumss2 11558 . . 3  |-  ( ph  -> 
sum_ k  e.  B  C  =  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) )
4428, 43oveq12d 5940 . 2  |-  ( ph  ->  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
45 0cnd 8019 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  0  e.  CC )
46 eleq1w 2257 . . . . . 6  |-  ( x  =  k  ->  (
x  e.  A  <->  k  e.  A ) )
4746dcbid 839 . . . . 5  |-  ( x  =  k  ->  (DECID  x  e.  A  <-> DECID  k  e.  A )
)
4821adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  A. x  e.  U DECID  x  e.  A
)
49 simpr 110 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  k  e.  U )
5047, 48, 49rspcdva 2873 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  A
)
5123, 45, 50ifcldcd 3597 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  A ,  C ,  0 )  e.  CC )
52 eleq1w 2257 . . . . . 6  |-  ( x  =  k  ->  (
x  e.  B  <->  k  e.  B ) )
5352dcbid 839 . . . . 5  |-  ( x  =  k  ->  (DECID  x  e.  B  <-> DECID  k  e.  B )
)
5439adantr 276 . . . . 5  |-  ( (
ph  /\  k  e.  U )  ->  A. x  e.  U DECID  x  e.  B
)
5553, 54, 49rspcdva 2873 . . . 4  |-  ( (
ph  /\  k  e.  U )  -> DECID  k  e.  B
)
5623, 45, 55ifcldcd 3597 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  if ( k  e.  B ,  C ,  0 )  e.  CC )
5726, 51, 56fsumadd 11571 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( sum_ k  e.  U  if ( k  e.  A ,  C ,  0 )  +  sum_ k  e.  U  if ( k  e.  B ,  C ,  0 ) ) )
582eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( k  e.  U  <->  k  e.  ( A  u.  B ) ) )
59 elun 3304 . . . . . 6  |-  ( k  e.  ( A  u.  B )  <->  ( k  e.  A  \/  k  e.  B ) )
6058, 59bitrdi 196 . . . . 5  |-  ( ph  ->  ( k  e.  U  <->  ( k  e.  A  \/  k  e.  B )
) )
6160biimpa 296 . . . 4  |-  ( (
ph  /\  k  e.  U )  ->  (
k  e.  A  \/  k  e.  B )
)
62 iftrue 3566 . . . . . . . 8  |-  ( k  e.  A  ->  if ( k  e.  A ,  C ,  0 )  =  C )
6362adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  A ,  C ,  0 )  =  C )
64 noel 3454 . . . . . . . . . . 11  |-  -.  k  e.  (/)
656eleq2d 2266 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( A  i^i  B )  <-> 
k  e.  (/) ) )
66 elin 3346 . . . . . . . . . . . 12  |-  ( k  e.  ( A  i^i  B )  <->  ( k  e.  A  /\  k  e.  B ) )
6765, 66bitr3di 195 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  (/)  <->  (
k  e.  A  /\  k  e.  B )
) )
6864, 67mtbii 675 . . . . . . . . . 10  |-  ( ph  ->  -.  ( k  e.  A  /\  k  e.  B ) )
69 imnan 691 . . . . . . . . . 10  |-  ( ( k  e.  A  ->  -.  k  e.  B
)  <->  -.  ( k  e.  A  /\  k  e.  B ) )
7068, 69sylibr 134 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  ->  -.  k  e.  B
) )
7170imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  B )
7271iffalsed 3571 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  B ,  C ,  0 )  =  0 )
7363, 72oveq12d 5940 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( C  + 
0 ) )
7424addridd 8175 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( C  +  0 )  =  C )
7573, 74eqtrd 2229 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
7670con2d 625 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  B  ->  -.  k  e.  A
) )
7776imp 124 . . . . . . . 8  |-  ( (
ph  /\  k  e.  B )  ->  -.  k  e.  A )
7877iffalsed 3571 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  A ,  C ,  0 )  =  0 )
79 iftrue 3566 . . . . . . . 8  |-  ( k  e.  B  ->  if ( k  e.  B ,  C ,  0 )  =  C )
8079adantl 277 . . . . . . 7  |-  ( (
ph  /\  k  e.  B )  ->  if ( k  e.  B ,  C ,  0 )  =  C )
8178, 80oveq12d 5940 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  ( 0  +  C ) )
8241addlidd 8176 . . . . . 6  |-  ( (
ph  /\  k  e.  B )  ->  (
0  +  C )  =  C )
8381, 82eqtrd 2229 . . . . 5  |-  ( (
ph  /\  k  e.  B )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
8475, 83jaodan 798 . . . 4  |-  ( (
ph  /\  ( k  e.  A  \/  k  e.  B ) )  -> 
( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C , 
0 ) )  =  C )
8561, 84syldan 282 . . 3  |-  ( (
ph  /\  k  e.  U )  ->  ( if ( k  e.  A ,  C ,  0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  C )
8685sumeq2dv 11533 . 2  |-  ( ph  -> 
sum_ k  e.  U  ( if ( k  e.  A ,  C , 
0 )  +  if ( k  e.  B ,  C ,  0 ) )  =  sum_ k  e.  U  C )
8744, 57, 863eqtr2rd 2236 1  |-  ( ph  -> 
sum_ k  e.  U  C  =  ( sum_ k  e.  A  C  +  sum_ k  e.  B  C ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   ifcif 3561   ` cfv 5258  (class class class)co 5922   Fincfn 6799   CCcc 7877   0cc0 7879    + caddc 7882   ZZcz 9326   ZZ>=cuz 9601   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  fsumsplitf  11573  sumpr  11578  sumtp  11579  fsumm1  11581  fsum1p  11583  fsumsplitsnun  11584  fsum2dlemstep  11599  fsumconst  11619  fsumlessfi  11625  fsumabs  11630  fsumiun  11642  mertenslemi1  11700  fsumcncntop  14803  dvmptfsum  14961  perfectlem2  15236  lgsquadlem2  15319  cvgcmp2nlemabs  15676
  Copyright terms: Public domain W3C validator