ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd Unicode version

Theorem pcgcd 12852
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) ) )

Proof of Theorem pcgcd
StepHypRef Expression
1 pcgcd1 12851 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
2 iftrue 3607 . . . 4  |-  ( ( P  pCnt  A )  <_  ( P  pCnt  B
)  ->  if (
( P  pCnt  A
)  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  A )
)
32adantl 277 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  A )
)
41, 3eqtr4d 2265 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B
) ,  ( P 
pCnt  A ) ,  ( P  pCnt  B )
) )
5 gcdcom 12494 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
653adant1 1039 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
76adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( A  gcd  B
)  =  ( B  gcd  A ) )
87oveq2d 6017 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( B  gcd  A ) ) )
9 iffalse 3610 . . . . 5  |-  ( -.  ( P  pCnt  A
)  <_  ( P  pCnt  B )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  B )
)
109adantl 277 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  B )
)
11 pcxnn0cl 12833 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  A )  e. NN0*
)
12113adant3 1041 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  A )  e. NN0*
)
13 pcxnn0cl 12833 . . . . . . 7  |-  ( ( P  e.  Prime  /\  B  e.  ZZ )  ->  ( P  pCnt  B )  e. NN0*
)
14 xnn0letri 9999 . . . . . . 7  |-  ( ( ( P  pCnt  A
)  e. NN0*  /\  ( P  pCnt  B )  e. NN0*
)  ->  ( ( P  pCnt  A )  <_ 
( P  pCnt  B
)  \/  ( P 
pCnt  B )  <_  ( P  pCnt  A ) ) )
1512, 13, 143imp3i2an 1207 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  \/  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
1615orcanai 933 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  B
)  <_  ( P  pCnt  A ) )
17 3ancomb 1010 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  <->  ( P  e.  Prime  /\  B  e.  ZZ  /\  A  e.  ZZ ) )
18 pcgcd1 12851 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  B  e.  ZZ  /\  A  e.  ZZ )  /\  ( P  pCnt  B
)  <_  ( P  pCnt  A ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
1917, 18sylanb 284 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  B
)  <_  ( P  pCnt  A ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
2016, 19syldan 282 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
2110, 20eqtr4d 2265 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  ( B  gcd  A ) ) )
228, 21eqtr4d 2265 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B
) ,  ( P 
pCnt  A ) ,  ( P  pCnt  B )
) )
23 xnn0dcle 9998 . . . 4  |-  ( ( ( P  pCnt  A
)  e. NN0*  /\  ( P  pCnt  B )  e. NN0*
)  -> DECID  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
2412, 13, 233imp3i2an 1207 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
25 exmiddc 841 . . 3  |-  (DECID  ( P 
pCnt  A )  <_  ( P  pCnt  B )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  \/  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
2624, 25syl 14 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  \/  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
274, 22, 26mpjaodan 803 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200   ifcif 3602   class class class wbr 4083  (class class class)co 6001    <_ cle 8182  NN0*cxnn0 9432   ZZcz 9446    gcd cgcd 12474   Primecprime 12629    pCnt cpc 12807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-xnn0 9433  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630  df-pc 12808
This theorem is referenced by:  pc2dvds  12853
  Copyright terms: Public domain W3C validator