ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcgcd Unicode version

Theorem pcgcd 12345
Description: The prime count of a GCD is the minimum of the prime counts of the arguments. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
pcgcd  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) ) )

Proof of Theorem pcgcd
StepHypRef Expression
1 pcgcd1 12344 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  A ) )
2 iftrue 3553 . . . 4  |-  ( ( P  pCnt  A )  <_  ( P  pCnt  B
)  ->  if (
( P  pCnt  A
)  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  A )
)
32adantl 277 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  A )
)
41, 3eqtr4d 2224 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B
) ,  ( P 
pCnt  A ) ,  ( P  pCnt  B )
) )
5 gcdcom 11991 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
653adant1 1016 . . . . 5  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
76adantr 276 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( A  gcd  B
)  =  ( B  gcd  A ) )
87oveq2d 5906 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  ( P  pCnt  ( B  gcd  A ) ) )
9 iffalse 3556 . . . . 5  |-  ( -.  ( P  pCnt  A
)  <_  ( P  pCnt  B )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  B )
)
109adantl 277 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  B )
)
11 pcxnn0cl 12327 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( P  pCnt  A )  e. NN0*
)
12113adant3 1018 . . . . . . 7  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  A )  e. NN0*
)
13 pcxnn0cl 12327 . . . . . . 7  |-  ( ( P  e.  Prime  /\  B  e.  ZZ )  ->  ( P  pCnt  B )  e. NN0*
)
14 xnn0letri 9820 . . . . . . 7  |-  ( ( ( P  pCnt  A
)  e. NN0*  /\  ( P  pCnt  B )  e. NN0*
)  ->  ( ( P  pCnt  A )  <_ 
( P  pCnt  B
)  \/  ( P 
pCnt  B )  <_  ( P  pCnt  A ) ) )
1512, 13, 143imp3i2an 1184 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  \/  ( P  pCnt  B )  <_ 
( P  pCnt  A
) ) )
1615orcanai 929 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  B
)  <_  ( P  pCnt  A ) )
17 3ancomb 987 . . . . . 6  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  <->  ( P  e.  Prime  /\  B  e.  ZZ  /\  A  e.  ZZ ) )
18 pcgcd1 12344 . . . . . 6  |-  ( ( ( P  e.  Prime  /\  B  e.  ZZ  /\  A  e.  ZZ )  /\  ( P  pCnt  B
)  <_  ( P  pCnt  A ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
1917, 18sylanb 284 . . . . 5  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  ( P  pCnt  B
)  <_  ( P  pCnt  A ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
2016, 19syldan 282 . . . 4  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( B  gcd  A ) )  =  ( P  pCnt  B ) )
2110, 20eqtr4d 2224 . . 3  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  ->  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) )  =  ( P  pCnt  ( B  gcd  A ) ) )
228, 21eqtr4d 2224 . 2  |-  ( ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) )  -> 
( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B
) ,  ( P 
pCnt  A ) ,  ( P  pCnt  B )
) )
23 xnn0dcle 9819 . . . 4  |-  ( ( ( P  pCnt  A
)  e. NN0*  /\  ( P  pCnt  B )  e. NN0*
)  -> DECID  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
2412, 13, 233imp3i2an 1184 . . 3  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  ( P  pCnt  A
)  <_  ( P  pCnt  B ) )
25 exmiddc 837 . . 3  |-  (DECID  ( P 
pCnt  A )  <_  ( P  pCnt  B )  -> 
( ( P  pCnt  A )  <_  ( P  pCnt  B )  \/  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
2624, 25syl 14 . 2  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  (
( P  pCnt  A
)  <_  ( P  pCnt  B )  \/  -.  ( P  pCnt  A )  <_  ( P  pCnt  B ) ) )
274, 22, 26mpjaodan 799 1  |-  ( ( P  e.  Prime  /\  A  e.  ZZ  /\  B  e.  ZZ )  ->  ( P  pCnt  ( A  gcd  B ) )  =  if ( ( P  pCnt  A )  <_  ( P  pCnt  B ) ,  ( P  pCnt  A ) ,  ( P  pCnt  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    /\ w3a 979    = wceq 1363    e. wcel 2159   ifcif 3548   class class class wbr 4017  (class class class)co 5890    <_ cle 8010  NN0*cxnn0 9256   ZZcz 9270    gcd cgcd 11960   Primecprime 12124    pCnt cpc 12301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601  ax-cnex 7919  ax-resscn 7920  ax-1cn 7921  ax-1re 7922  ax-icn 7923  ax-addcl 7924  ax-addrcl 7925  ax-mulcl 7926  ax-mulrcl 7927  ax-addcom 7928  ax-mulcom 7929  ax-addass 7930  ax-mulass 7931  ax-distr 7932  ax-i2m1 7933  ax-0lt1 7934  ax-1rid 7935  ax-0id 7936  ax-rnegex 7937  ax-precex 7938  ax-cnre 7939  ax-pre-ltirr 7940  ax-pre-ltwlin 7941  ax-pre-lttrn 7942  ax-pre-apti 7943  ax-pre-ltadd 7944  ax-pre-mulgt0 7945  ax-pre-mulext 7946  ax-arch 7947  ax-caucvg 7948
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-nel 2455  df-ral 2472  df-rex 2473  df-reu 2474  df-rmo 2475  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-if 3549  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-ilim 4383  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-isom 5239  df-riota 5846  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-frec 6409  df-1o 6434  df-2o 6435  df-er 6552  df-en 6758  df-sup 7000  df-inf 7001  df-pnf 8011  df-mnf 8012  df-xr 8013  df-ltxr 8014  df-le 8015  df-sub 8147  df-neg 8148  df-reap 8549  df-ap 8556  df-div 8647  df-inn 8937  df-2 8995  df-3 8996  df-4 8997  df-n0 9194  df-xnn0 9257  df-z 9271  df-uz 9546  df-q 9637  df-rp 9671  df-fz 10026  df-fzo 10160  df-fl 10287  df-mod 10340  df-seqfrec 10463  df-exp 10537  df-cj 10868  df-re 10869  df-im 10870  df-rsqrt 11024  df-abs 11025  df-dvds 11812  df-gcd 11961  df-prm 12125  df-pc 12302
This theorem is referenced by:  pc2dvds  12346
  Copyright terms: Public domain W3C validator