ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orduniss Unicode version

Theorem orduniss 4252
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniss  |-  ( Ord 
A  ->  U. A  C_  A )

Proof of Theorem orduniss
StepHypRef Expression
1 ordtr 4205 . 2  |-  ( Ord 
A  ->  Tr  A
)
2 df-tr 3937 . 2  |-  ( Tr  A  <->  U. A  C_  A
)
31, 2sylib 120 1  |-  ( Ord 
A  ->  U. A  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 2999   U.cuni 3653   Tr wtr 3936   Ord word 4189
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-tr 3937  df-iord 4193
This theorem is referenced by:  ordunisuc2r  4331  limom  4428
  Copyright terms: Public domain W3C validator