| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| ordtr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dford3 4402 | 
. 2
 | |
| 2 | 1 | simplbi 274 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 | 
| This theorem depends on definitions: df-bi 117 df-iord 4401 | 
| This theorem is referenced by: ordelss 4414 ordin 4420 ordtr1 4423 orduniss 4460 ontrci 4462 ordon 4522 ordsucim 4536 ordsucss 4540 onsucsssucr 4545 onintonm 4553 ordsucunielexmid 4567 ordn2lp 4581 onsucuni2 4600 nlimsucg 4602 ordpwsucss 4603 tfrexlem 6392 nnsucuniel 6553 ctmlemr 7174 nnnninf 7192 nnnninfeq 7194 nnnninfeq2 7195 ctinf 12647 nnsf 15649 peano4nninf 15650 | 
| Copyright terms: Public domain | W3C validator |