| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4432 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iord 4431 |
| This theorem is referenced by: ordelss 4444 ordin 4450 ordtr1 4453 orduniss 4490 ontrci 4492 ordon 4552 ordsucim 4566 ordsucss 4570 onsucsssucr 4575 onintonm 4583 ordsucunielexmid 4597 ordn2lp 4611 onsucuni2 4630 nlimsucg 4632 ordpwsucss 4633 tfrexlem 6443 nnsucuniel 6604 ctmlemr 7236 nnnninf 7254 nnnninfeq 7256 nnnninfeq2 7257 ctinf 12916 nnsf 16144 peano4nninf 16145 nnnninfex 16161 |
| Copyright terms: Public domain | W3C validator |