ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr Unicode version

Theorem ordtr 4380
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr  |-  ( Ord 
A  ->  Tr  A
)

Proof of Theorem ordtr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dford3 4369 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
21simplbi 274 1  |-  ( Ord 
A  ->  Tr  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2455   Tr wtr 4103   Ord word 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iord 4368
This theorem is referenced by:  ordelss  4381  ordin  4387  ordtr1  4390  orduniss  4427  ontrci  4429  ordon  4487  ordsucim  4501  ordsucss  4505  onsucsssucr  4510  onintonm  4518  ordsucunielexmid  4532  ordn2lp  4546  onsucuni2  4565  nlimsucg  4567  ordpwsucss  4568  tfrexlem  6337  nnsucuniel  6498  ctmlemr  7109  nnnninf  7126  nnnninfeq  7128  nnnninfeq2  7129  ctinf  12433  nnsf  14839  peano4nninf  14840
  Copyright terms: Public domain W3C validator