| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version | ||
| Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dford3 4458 |
. 2
| |
| 2 | 1 | simplbi 274 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 df-iord 4457 |
| This theorem is referenced by: ordelss 4470 ordin 4476 ordtr1 4479 orduniss 4516 ontrci 4518 ordon 4578 ordsucim 4592 ordsucss 4596 onsucsssucr 4601 onintonm 4609 ordsucunielexmid 4623 ordn2lp 4637 onsucuni2 4656 nlimsucg 4658 ordpwsucss 4659 tfrexlem 6480 nnsucuniel 6641 ctmlemr 7275 nnnninf 7293 nnnninfeq 7295 nnnninfeq2 7296 ctinf 13001 nnsf 16371 peano4nninf 16372 nnnninfex 16388 |
| Copyright terms: Public domain | W3C validator |