![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4398 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-iord 4397 |
This theorem is referenced by: ordelss 4410 ordin 4416 ordtr1 4419 orduniss 4456 ontrci 4458 ordon 4518 ordsucim 4532 ordsucss 4536 onsucsssucr 4541 onintonm 4549 ordsucunielexmid 4563 ordn2lp 4577 onsucuni2 4596 nlimsucg 4598 ordpwsucss 4599 tfrexlem 6387 nnsucuniel 6548 ctmlemr 7167 nnnninf 7185 nnnninfeq 7187 nnnninfeq2 7188 ctinf 12587 nnsf 15495 peano4nninf 15496 |
Copyright terms: Public domain | W3C validator |