![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4379 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 274 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 df-iord 4378 |
This theorem is referenced by: ordelss 4391 ordin 4397 ordtr1 4400 orduniss 4437 ontrci 4439 ordon 4497 ordsucim 4511 ordsucss 4515 onsucsssucr 4520 onintonm 4528 ordsucunielexmid 4542 ordn2lp 4556 onsucuni2 4575 nlimsucg 4577 ordpwsucss 4578 tfrexlem 6349 nnsucuniel 6510 ctmlemr 7121 nnnninf 7138 nnnninfeq 7140 nnnninfeq2 7141 ctinf 12445 nnsf 15108 peano4nninf 15109 |
Copyright terms: Public domain | W3C validator |