ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtr Unicode version

Theorem ordtr 4469
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
ordtr  |-  ( Ord 
A  ->  Tr  A
)

Proof of Theorem ordtr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dford3 4458 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  A. x  e.  A  Tr  x ) )
21simplbi 274 1  |-  ( Ord 
A  ->  Tr  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wral 2508   Tr wtr 4182   Ord word 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106
This theorem depends on definitions:  df-bi 117  df-iord 4457
This theorem is referenced by:  ordelss  4470  ordin  4476  ordtr1  4479  orduniss  4516  ontrci  4518  ordon  4578  ordsucim  4592  ordsucss  4596  onsucsssucr  4601  onintonm  4609  ordsucunielexmid  4623  ordn2lp  4637  onsucuni2  4656  nlimsucg  4658  ordpwsucss  4659  tfrexlem  6480  nnsucuniel  6641  ctmlemr  7275  nnnninf  7293  nnnninfeq  7295  nnnninfeq2  7296  ctinf  13001  nnsf  16371  peano4nninf  16372  nnnninfex  16388
  Copyright terms: Public domain W3C validator