![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordtr | Unicode version |
Description: An ordinal class is transitive. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
ordtr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dford3 4192 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simplbi 268 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-iord 4191 |
This theorem is referenced by: ordelss 4204 ordin 4210 ordtr1 4213 orduniss 4250 ontrci 4252 ordon 4301 ordsucim 4315 ordsucss 4319 onsucsssucr 4324 onintonm 4332 ordsucunielexmid 4345 ordn2lp 4359 onsucuni2 4378 nlimsucg 4380 ordpwsucss 4381 tfrexlem 6091 nnsucuniel 6248 nnnninf 6796 nnsf 11778 peano4nninf 11779 nninfalllemn 11781 |
Copyright terms: Public domain | W3C validator |