ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordunisuc2r Unicode version

Theorem ordunisuc2r 4550
Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
Assertion
Ref Expression
ordunisuc2r  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2r
StepHypRef Expression
1 vex 2766 . . . . . . . . 9  |-  x  e. 
_V
21sucid 4452 . . . . . . . 8  |-  x  e. 
suc  x
3 elunii 3844 . . . . . . . 8  |-  ( ( x  e.  suc  x  /\  suc  x  e.  A
)  ->  x  e.  U. A )
42, 3mpan 424 . . . . . . 7  |-  ( suc  x  e.  A  ->  x  e.  U. A )
54imim2i 12 . . . . . 6  |-  ( ( x  e.  A  ->  suc  x  e.  A )  ->  ( x  e.  A  ->  x  e.  U. A ) )
65alimi 1469 . . . . 5  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x
( x  e.  A  ->  x  e.  U. A
) )
7 df-ral 2480 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
8 dfss2 3172 . . . . 5  |-  ( A 
C_  U. A  <->  A. x
( x  e.  A  ->  x  e.  U. A
) )
96, 7, 83imtr4i 201 . . . 4  |-  ( A. x  e.  A  suc  x  e.  A  ->  A 
C_  U. A )
109a1i 9 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A 
C_  U. A ) )
11 orduniss 4460 . . 3  |-  ( Ord 
A  ->  U. A  C_  A )
1210, 11jctird 317 . 2  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  ( A  C_  U. A  /\  U. A  C_  A )
) )
13 eqss 3198 . 2  |-  ( A  =  U. A  <->  ( A  C_ 
U. A  /\  U. A  C_  A ) )
1412, 13imbitrrdi 162 1  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364    e. wcel 2167   A.wral 2475    C_ wss 3157   U.cuni 3839   Ord word 4397   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-uni 3840  df-tr 4132  df-iord 4401  df-suc 4406
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator