ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordunisuc2r Unicode version

Theorem ordunisuc2r 4491
Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.)
Assertion
Ref Expression
ordunisuc2r  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
Distinct variable group:    x, A

Proof of Theorem ordunisuc2r
StepHypRef Expression
1 vex 2729 . . . . . . . . 9  |-  x  e. 
_V
21sucid 4395 . . . . . . . 8  |-  x  e. 
suc  x
3 elunii 3794 . . . . . . . 8  |-  ( ( x  e.  suc  x  /\  suc  x  e.  A
)  ->  x  e.  U. A )
42, 3mpan 421 . . . . . . 7  |-  ( suc  x  e.  A  ->  x  e.  U. A )
54imim2i 12 . . . . . 6  |-  ( ( x  e.  A  ->  suc  x  e.  A )  ->  ( x  e.  A  ->  x  e.  U. A ) )
65alimi 1443 . . . . 5  |-  ( A. x ( x  e.  A  ->  suc  x  e.  A )  ->  A. x
( x  e.  A  ->  x  e.  U. A
) )
7 df-ral 2449 . . . . 5  |-  ( A. x  e.  A  suc  x  e.  A  <->  A. x
( x  e.  A  ->  suc  x  e.  A
) )
8 dfss2 3131 . . . . 5  |-  ( A 
C_  U. A  <->  A. x
( x  e.  A  ->  x  e.  U. A
) )
96, 7, 83imtr4i 200 . . . 4  |-  ( A. x  e.  A  suc  x  e.  A  ->  A 
C_  U. A )
109a1i 9 . . 3  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A 
C_  U. A ) )
11 orduniss 4403 . . 3  |-  ( Ord 
A  ->  U. A  C_  A )
1210, 11jctird 315 . 2  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  ( A  C_  U. A  /\  U. A  C_  A )
) )
13 eqss 3157 . 2  |-  ( A  =  U. A  <->  ( A  C_ 
U. A  /\  U. A  C_  A ) )
1412, 13syl6ibr 161 1  |-  ( Ord 
A  ->  ( A. x  e.  A  suc  x  e.  A  ->  A  =  U. A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   U.cuni 3789   Ord word 4340   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-uni 3790  df-tr 4081  df-iord 4344  df-suc 4349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator