| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordunisuc2r | Unicode version | ||
| Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordunisuc2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 |
. . . . . . . . 9
| |
| 2 | 1 | sucid 4482 |
. . . . . . . 8
|
| 3 | elunii 3869 |
. . . . . . . 8
| |
| 4 | 2, 3 | mpan 424 |
. . . . . . 7
|
| 5 | 4 | imim2i 12 |
. . . . . 6
|
| 6 | 5 | alimi 1479 |
. . . . 5
|
| 7 | df-ral 2491 |
. . . . 5
| |
| 8 | ssalel 3189 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3imtr4i 201 |
. . . 4
|
| 10 | 9 | a1i 9 |
. . 3
|
| 11 | orduniss 4490 |
. . 3
| |
| 12 | 10, 11 | jctird 317 |
. 2
|
| 13 | eqss 3216 |
. 2
| |
| 14 | 12, 13 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-uni 3865 df-tr 4159 df-iord 4431 df-suc 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |