Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ordunisuc2r | Unicode version |
Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.) |
Ref | Expression |
---|---|
ordunisuc2r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2712 | . . . . . . . . 9 | |
2 | 1 | sucid 4372 | . . . . . . . 8 |
3 | elunii 3773 | . . . . . . . 8 | |
4 | 2, 3 | mpan 421 | . . . . . . 7 |
5 | 4 | imim2i 12 | . . . . . 6 |
6 | 5 | alimi 1432 | . . . . 5 |
7 | df-ral 2437 | . . . . 5 | |
8 | dfss2 3113 | . . . . 5 | |
9 | 6, 7, 8 | 3imtr4i 200 | . . . 4 |
10 | 9 | a1i 9 | . . 3 |
11 | orduniss 4380 | . . 3 | |
12 | 10, 11 | jctird 315 | . 2 |
13 | eqss 3139 | . 2 | |
14 | 12, 13 | syl6ibr 161 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1330 wceq 1332 wcel 2125 wral 2432 wss 3098 cuni 3768 word 4317 csuc 4320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-uni 3769 df-tr 4059 df-iord 4321 df-suc 4326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |