| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordunisuc2r | Unicode version | ||
| Description: An ordinal which contains the successor of each of its members is equal to its union. (Contributed by Jim Kingdon, 14-Nov-2018.) |
| Ref | Expression |
|---|---|
| ordunisuc2r |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2766 |
. . . . . . . . 9
| |
| 2 | 1 | sucid 4453 |
. . . . . . . 8
|
| 3 | elunii 3845 |
. . . . . . . 8
| |
| 4 | 2, 3 | mpan 424 |
. . . . . . 7
|
| 5 | 4 | imim2i 12 |
. . . . . 6
|
| 6 | 5 | alimi 1469 |
. . . . 5
|
| 7 | df-ral 2480 |
. . . . 5
| |
| 8 | ssalel 3172 |
. . . . 5
| |
| 9 | 6, 7, 8 | 3imtr4i 201 |
. . . 4
|
| 10 | 9 | a1i 9 |
. . 3
|
| 11 | orduniss 4461 |
. . 3
| |
| 12 | 10, 11 | jctird 317 |
. 2
|
| 13 | eqss 3199 |
. 2
| |
| 14 | 12, 13 | imbitrrdi 162 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-uni 3841 df-tr 4133 df-iord 4402 df-suc 4407 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |