ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onordi Unicode version

Theorem onordi 4455
Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1  |-  A  e.  On
Assertion
Ref Expression
onordi  |-  Ord  A

Proof of Theorem onordi
StepHypRef Expression
1 on.1 . 2  |-  A  e.  On
2 eloni 4404 . 2  |-  ( A  e.  On  ->  Ord  A )
31, 2ax-mp 5 1  |-  Ord  A
Colors of variables: wff set class
Syntax hints:    e. wcel 2164   Ord word 4391   Oncon0 4392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836  df-tr 4128  df-iord 4395  df-on 4397
This theorem is referenced by:  ontrci  4456  onsucssi  4536  onsucsssucexmid  4557  onirri  4573
  Copyright terms: Public domain W3C validator