Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  onordi Unicode version

Theorem onordi 4343
 Description: An ordinal number is an ordinal class. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
on.1
Assertion
Ref Expression
onordi

Proof of Theorem onordi
StepHypRef Expression
1 on.1 . 2
2 eloni 4292 . 2
31, 2ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wcel 1480   word 4279  con0 4280 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732  df-tr 4022  df-iord 4283  df-on 4285 This theorem is referenced by:  ontrci  4344  onsucssi  4417  onsucsssucexmid  4437  onirri  4453
 Copyright terms: Public domain W3C validator