ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom Unicode version

Theorem limom 4634
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom  |-  Lim  om

Proof of Theorem limom
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4627 . 2  |-  Ord  om
2 peano1 4614 . 2  |-  (/)  e.  om
3 vex 2755 . . . . . . . . 9  |-  x  e. 
_V
43sucex 4519 . . . . . . . 8  |-  suc  x  e.  _V
54isseti 2760 . . . . . . 7  |-  E. z 
z  =  suc  x
6 peano2 4615 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
73sucid 4438 . . . . . . . . 9  |-  x  e. 
suc  x
86, 7jctil 312 . . . . . . . 8  |-  ( x  e.  om  ->  (
x  e.  suc  x  /\  suc  x  e.  om ) )
9 eleq2 2253 . . . . . . . . 9  |-  ( z  =  suc  x  -> 
( x  e.  z  <-> 
x  e.  suc  x
) )
10 eleq1 2252 . . . . . . . . 9  |-  ( z  =  suc  x  -> 
( z  e.  om  <->  suc  x  e.  om )
)
119, 10anbi12d 473 . . . . . . . 8  |-  ( z  =  suc  x  -> 
( ( x  e.  z  /\  z  e. 
om )  <->  ( x  e.  suc  x  /\  suc  x  e.  om )
) )
128, 11imbitrrid 156 . . . . . . 7  |-  ( z  =  suc  x  -> 
( x  e.  om  ->  ( x  e.  z  /\  z  e.  om ) ) )
135, 12eximii 1613 . . . . . 6  |-  E. z
( x  e.  om  ->  ( x  e.  z  /\  z  e.  om ) )
141319.37aiv 1686 . . . . 5  |-  ( x  e.  om  ->  E. z
( x  e.  z  /\  z  e.  om ) )
15 eluni 3830 . . . . 5  |-  ( x  e.  U. om  <->  E. z
( x  e.  z  /\  z  e.  om ) )
1614, 15sylibr 134 . . . 4  |-  ( x  e.  om  ->  x  e.  U. om )
1716ssriv 3174 . . 3  |-  om  C_  U. om
18 orduniss 4446 . . . 4  |-  ( Ord 
om  ->  U. om  C_  om )
191, 18ax-mp 5 . . 3  |-  U. om  C_ 
om
2017, 19eqssi 3186 . 2  |-  om  =  U. om
21 dflim2 4391 . 2  |-  ( Lim 
om 
<->  ( Ord  om  /\  (/) 
e.  om  /\  om  =  U. om ) )
221, 2, 20, 21mpbir3an 1181 1  |-  Lim  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1503    e. wcel 2160    C_ wss 3144   (/)c0 3437   U.cuni 3827   Ord word 4383   Lim wlim 4385   suc csuc 4386   omcom 4610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-iinf 4608
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-uni 3828  df-int 3863  df-tr 4120  df-iord 4387  df-ilim 4390  df-suc 4392  df-iom 4611
This theorem is referenced by:  freccllem  6431  frecfcllem  6433  frecsuclem  6435
  Copyright terms: Public domain W3C validator