Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > limom | Unicode version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
limom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 4600 | . 2 | |
2 | peano1 4587 | . 2 | |
3 | vex 2738 | . . . . . . . . 9 | |
4 | 3 | sucex 4492 | . . . . . . . 8 |
5 | 4 | isseti 2743 | . . . . . . 7 |
6 | peano2 4588 | . . . . . . . . 9 | |
7 | 3 | sucid 4411 | . . . . . . . . 9 |
8 | 6, 7 | jctil 312 | . . . . . . . 8 |
9 | eleq2 2239 | . . . . . . . . 9 | |
10 | eleq1 2238 | . . . . . . . . 9 | |
11 | 9, 10 | anbi12d 473 | . . . . . . . 8 |
12 | 8, 11 | syl5ibr 156 | . . . . . . 7 |
13 | 5, 12 | eximii 1600 | . . . . . 6 |
14 | 13 | 19.37aiv 1673 | . . . . 5 |
15 | eluni 3808 | . . . . 5 | |
16 | 14, 15 | sylibr 134 | . . . 4 |
17 | 16 | ssriv 3157 | . . 3 |
18 | orduniss 4419 | . . . 4 | |
19 | 1, 18 | ax-mp 5 | . . 3 |
20 | 17, 19 | eqssi 3169 | . 2 |
21 | dflim2 4364 | . 2 | |
22 | 1, 2, 20, 21 | mpbir3an 1179 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wex 1490 wcel 2146 wss 3127 c0 3420 cuni 3805 word 4356 wlim 4358 csuc 4359 com 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-iinf 4581 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-int 3841 df-tr 4097 df-iord 4360 df-ilim 4363 df-suc 4365 df-iom 4584 |
This theorem is referenced by: freccllem 6393 frecfcllem 6395 frecsuclem 6397 |
Copyright terms: Public domain | W3C validator |