| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | Unicode version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4699 |
. 2
| |
| 2 | peano1 4686 |
. 2
| |
| 3 | vex 2802 |
. . . . . . . . 9
| |
| 4 | 3 | sucex 4591 |
. . . . . . . 8
|
| 5 | 4 | isseti 2808 |
. . . . . . 7
|
| 6 | peano2 4687 |
. . . . . . . . 9
| |
| 7 | 3 | sucid 4508 |
. . . . . . . . 9
|
| 8 | 6, 7 | jctil 312 |
. . . . . . . 8
|
| 9 | eleq2 2293 |
. . . . . . . . 9
| |
| 10 | eleq1 2292 |
. . . . . . . . 9
| |
| 11 | 9, 10 | anbi12d 473 |
. . . . . . . 8
|
| 12 | 8, 11 | imbitrrid 156 |
. . . . . . 7
|
| 13 | 5, 12 | eximii 1648 |
. . . . . 6
|
| 14 | 13 | 19.37aiv 1721 |
. . . . 5
|
| 15 | eluni 3891 |
. . . . 5
| |
| 16 | 14, 15 | sylibr 134 |
. . . 4
|
| 17 | 16 | ssriv 3228 |
. . 3
|
| 18 | orduniss 4516 |
. . . 4
| |
| 19 | 1, 18 | ax-mp 5 |
. . 3
|
| 20 | 17, 19 | eqssi 3240 |
. 2
|
| 21 | dflim2 4461 |
. 2
| |
| 22 | 1, 2, 20, 21 | mpbir3an 1203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-tr 4183 df-iord 4457 df-ilim 4460 df-suc 4462 df-iom 4683 |
| This theorem is referenced by: freccllem 6548 frecfcllem 6550 frecsuclem 6552 |
| Copyright terms: Public domain | W3C validator |