| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | Unicode version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4673 |
. 2
| |
| 2 | peano1 4660 |
. 2
| |
| 3 | vex 2779 |
. . . . . . . . 9
| |
| 4 | 3 | sucex 4565 |
. . . . . . . 8
|
| 5 | 4 | isseti 2785 |
. . . . . . 7
|
| 6 | peano2 4661 |
. . . . . . . . 9
| |
| 7 | 3 | sucid 4482 |
. . . . . . . . 9
|
| 8 | 6, 7 | jctil 312 |
. . . . . . . 8
|
| 9 | eleq2 2271 |
. . . . . . . . 9
| |
| 10 | eleq1 2270 |
. . . . . . . . 9
| |
| 11 | 9, 10 | anbi12d 473 |
. . . . . . . 8
|
| 12 | 8, 11 | imbitrrid 156 |
. . . . . . 7
|
| 13 | 5, 12 | eximii 1626 |
. . . . . 6
|
| 14 | 13 | 19.37aiv 1699 |
. . . . 5
|
| 15 | eluni 3867 |
. . . . 5
| |
| 16 | 14, 15 | sylibr 134 |
. . . 4
|
| 17 | 16 | ssriv 3205 |
. . 3
|
| 18 | orduniss 4490 |
. . . 4
| |
| 19 | 1, 18 | ax-mp 5 |
. . 3
|
| 20 | 17, 19 | eqssi 3217 |
. 2
|
| 21 | dflim2 4435 |
. 2
| |
| 22 | 1, 2, 20, 21 | mpbir3an 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-int 3900 df-tr 4159 df-iord 4431 df-ilim 4434 df-suc 4436 df-iom 4657 |
| This theorem is referenced by: freccllem 6511 frecfcllem 6513 frecsuclem 6515 |
| Copyright terms: Public domain | W3C validator |