| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > limom | Unicode version | ||
| Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
| Ref | Expression |
|---|---|
| limom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 4656 |
. 2
| |
| 2 | peano1 4643 |
. 2
| |
| 3 | vex 2775 |
. . . . . . . . 9
| |
| 4 | 3 | sucex 4548 |
. . . . . . . 8
|
| 5 | 4 | isseti 2780 |
. . . . . . 7
|
| 6 | peano2 4644 |
. . . . . . . . 9
| |
| 7 | 3 | sucid 4465 |
. . . . . . . . 9
|
| 8 | 6, 7 | jctil 312 |
. . . . . . . 8
|
| 9 | eleq2 2269 |
. . . . . . . . 9
| |
| 10 | eleq1 2268 |
. . . . . . . . 9
| |
| 11 | 9, 10 | anbi12d 473 |
. . . . . . . 8
|
| 12 | 8, 11 | imbitrrid 156 |
. . . . . . 7
|
| 13 | 5, 12 | eximii 1625 |
. . . . . 6
|
| 14 | 13 | 19.37aiv 1698 |
. . . . 5
|
| 15 | eluni 3853 |
. . . . 5
| |
| 16 | 14, 15 | sylibr 134 |
. . . 4
|
| 17 | 16 | ssriv 3197 |
. . 3
|
| 18 | orduniss 4473 |
. . . 4
| |
| 19 | 1, 18 | ax-mp 5 |
. . 3
|
| 20 | 17, 19 | eqssi 3209 |
. 2
|
| 21 | dflim2 4418 |
. 2
| |
| 22 | 1, 2, 20, 21 | mpbir3an 1182 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-tr 4144 df-iord 4414 df-ilim 4417 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: freccllem 6490 frecfcllem 6492 frecsuclem 6494 |
| Copyright terms: Public domain | W3C validator |