ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucssel Unicode version

Theorem sucssel 4402
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 4394 . 2  |-  ( A  e.  V  ->  A  e.  suc  A )
2 ssel 3136 . 2  |-  ( suc 
A  C_  B  ->  ( A  e.  suc  A  ->  A  e.  B ) )
31, 2syl5com 29 1  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    C_ wss 3116   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-suc 4349
This theorem is referenced by:  ordelsuc  4482  sucpw1nss3  7191  3nsssucpw1  7192  bj-nnelirr  13835
  Copyright terms: Public domain W3C validator