ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucssel Unicode version

Theorem sucssel 4471
Description: A set whose successor is a subset of another class is a member of that class. (Contributed by NM, 16-Sep-1995.)
Assertion
Ref Expression
sucssel  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )

Proof of Theorem sucssel
StepHypRef Expression
1 sucidg 4463 . 2  |-  ( A  e.  V  ->  A  e.  suc  A )
2 ssel 3187 . 2  |-  ( suc 
A  C_  B  ->  ( A  e.  suc  A  ->  A  e.  B ) )
31, 2syl5com 29 1  |-  ( A  e.  V  ->  ( suc  A  C_  B  ->  A  e.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    C_ wss 3166   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-suc 4418
This theorem is referenced by:  ordelsuc  4553  sucpw1nss3  7347  3nsssucpw1  7348  bj-nnelirr  15889
  Copyright terms: Public domain W3C validator