ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif3ss Unicode version

Theorem undif3ss 3442
Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
undif3ss  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3322 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 3183 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 764 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4 orc 714 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
5 olc 713 . . . . . . 7  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
64, 5jca 306 . . . . . 6  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
7 olc 713 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
8 orc 714 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
97, 8anim12i 338 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
106, 9jaoi 718 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
11 simpl 109 . . . . . . 7  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
1211orcd 735 . . . . . 6  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
13 olc 713 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
14 orc 714 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1514adantr 276 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1614adantl 277 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1712, 13, 15, 16ccase 967 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
1810, 17impbii 126 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
191, 3, 183bitri 206 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
20 elun 3322 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2120biimpri 133 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  x  e.  ( A  u.  B ) )
22 pm4.53r 753 . . . . . 6  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
23 eldif 3183 . . . . . 6  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
2422, 23sylnibr 679 . . . . 5  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  x  e.  ( C  \  A
) )
2521, 24anim12i 338 . . . 4  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
26 eldif 3183 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
2725, 26sylibr 134 . . 3  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2819, 27sylbi 121 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2928ssriv 3205 1  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    \/ wo 710    e. wcel 2178    \ cdif 3171    u. cun 3172    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator