ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif3ss Unicode version

Theorem undif3ss 3258
Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
undif3ss  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3139 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 3006 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 714 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4 orc 668 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
5 olc 667 . . . . . . 7  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
64, 5jca 300 . . . . . 6  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
7 olc 667 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
8 orc 668 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
97, 8anim12i 331 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
106, 9jaoi 671 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
11 simpl 107 . . . . . . 7  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
1211orcd 687 . . . . . 6  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
13 olc 667 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
14 orc 668 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1514adantr 270 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1614adantl 271 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1712, 13, 15, 16ccase 910 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
1810, 17impbii 124 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
191, 3, 183bitri 204 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
20 elun 3139 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2120biimpri 131 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  x  e.  ( A  u.  B ) )
22 pm4.53r 842 . . . . . 6  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
23 eldif 3006 . . . . . 6  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
2422, 23sylnibr 637 . . . . 5  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  x  e.  ( C  \  A
) )
2521, 24anim12i 331 . . . 4  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
26 eldif 3006 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
2725, 26sylibr 132 . . 3  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2819, 27sylbi 119 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2928ssriv 3027 1  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    \/ wo 664    e. wcel 1438    \ cdif 2994    u. cun 2995    C_ wss 2997
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator