ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif3ss Unicode version

Theorem undif3ss 3383
Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
undif3ss  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3263 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 3125 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 752 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4 orc 702 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
5 olc 701 . . . . . . 7  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
64, 5jca 304 . . . . . 6  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
7 olc 701 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
8 orc 702 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
97, 8anim12i 336 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
106, 9jaoi 706 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
11 simpl 108 . . . . . . 7  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
1211orcd 723 . . . . . 6  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
13 olc 701 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
14 orc 702 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1514adantr 274 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1614adantl 275 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1712, 13, 15, 16ccase 954 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
1810, 17impbii 125 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
191, 3, 183bitri 205 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
20 elun 3263 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2120biimpri 132 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  x  e.  ( A  u.  B ) )
22 pm4.53r 741 . . . . . 6  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
23 eldif 3125 . . . . . 6  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
2422, 23sylnibr 667 . . . . 5  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  x  e.  ( C  \  A
) )
2521, 24anim12i 336 . . . 4  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
26 eldif 3125 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
2725, 26sylibr 133 . . 3  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2819, 27sylbi 120 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2928ssriv 3146 1  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    \/ wo 698    e. wcel 2136    \ cdif 3113    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator