Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm4.79dc | Unicode version |
Description: Equivalence between a disjunction of two implications, and a conjunction and an implication. Based on theorem *4.79 of [WhiteheadRussell] p. 121 but with additional decidability antecedents. (Contributed by Jim Kingdon, 28-Mar-2018.) |
Ref | Expression |
---|---|
pm4.79dc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . . 4 | |
2 | id 19 | . . . 4 | |
3 | 1, 2 | jaoa 710 | . . 3 |
4 | simplimdc 850 | . . . . . 6 DECID | |
5 | pm3.3 259 | . . . . . 6 | |
6 | 4, 5 | syl9 72 | . . . . 5 DECID |
7 | dcim 831 | . . . . . 6 DECID DECID DECID | |
8 | pm2.54dc 881 | . . . . . 6 DECID | |
9 | 7, 8 | syl6 33 | . . . . 5 DECID DECID |
10 | 6, 9 | syl5d 68 | . . . 4 DECID DECID |
11 | 10 | imp 123 | . . 3 DECID DECID |
12 | 3, 11 | impbid2 142 | . 2 DECID DECID |
13 | 12 | expcom 115 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |