ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.55dc Unicode version

Theorem pm4.55dc 940
Description: Theorem *4.55 of [WhiteheadRussell] p. 120, for decidable propositions. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.55dc  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( -. 
ph  /\  ps )  <->  (
ph  \/  -.  ps )
) ) )

Proof of Theorem pm4.55dc
StepHypRef Expression
1 pm4.54dc 903 . . . . 5  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  /\ 
ps )  <->  -.  ( ph  \/  -.  ps )
) ) )
21imp 124 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  /\  ps )  <->  -.  ( ph  \/  -.  ps ) ) )
3 dcor 937 . . . . . 6  |-  (DECID  ph  ->  (DECID  -. 
ps  -> DECID 
( ph  \/  -.  ps ) ) )
4 dcn 843 . . . . . 6  |-  (DECID  ps  -> DECID  -.  ps )
53, 4impel 280 . . . . 5  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( ph  \/  -.  ps ) )
6 dcn 843 . . . . . 6  |-  (DECID  ph  -> DECID  -.  ph )
7 dcan 935 . . . . . 6  |-  ( (DECID  -. 
ph  /\ DECID  ps )  -> DECID  ( -.  ph  /\  ps ) )
86, 7sylan 283 . . . . 5  |-  ( (DECID  ph  /\ DECID  ps )  -> DECID 
( -.  ph  /\  ps ) )
9 con2bidc 876 . . . . 5  |-  (DECID  ( ph  \/  -.  ps )  -> 
(DECID  ( -.  ph  /\  ps )  ->  ( ( ( ph  \/  -.  ps )  <->  -.  ( -.  ph 
/\  ps ) )  <->  ( ( -.  ph  /\  ps )  <->  -.  ( ph  \/  -.  ps ) ) ) ) )
105, 8, 9sylc 62 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( (
ph  \/  -.  ps )  <->  -.  ( -.  ph  /\  ps ) )  <->  ( ( -.  ph  /\  ps )  <->  -.  ( ph  \/  -.  ps ) ) ) )
112, 10mpbird 167 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( ph  \/  -.  ps )  <->  -.  ( -.  ph  /\  ps )
) )
1211, 11, 113bitr2rd 217 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( -.  ph  /\  ps )  <->  (
ph  \/  -.  ps )
) )
1312ex 115 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( -.  ( -. 
ph  /\  ps )  <->  (
ph  \/  -.  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator