Proof of Theorem pm4.55dc
Step | Hyp | Ref
| Expression |
1 | | pm4.54dc 897 |
. . . . 5
DECID DECID
|
2 | 1 | imp 123 |
. . . 4
DECID DECID
|
3 | | dcn 837 |
. . . . . . . . 9
DECID DECID |
4 | 3 | anim2i 340 |
. . . . . . . 8
DECID DECID DECID
DECID |
5 | | dcor 930 |
. . . . . . . . 9
DECID DECID DECID
|
6 | 5 | imp 123 |
. . . . . . . 8
DECID DECID
DECID |
7 | 4, 6 | syl 14 |
. . . . . . 7
DECID DECID DECID
|
8 | | dcn 837 |
. . . . . . . . 9
DECID DECID |
9 | | dcan2 929 |
. . . . . . . . 9
DECID DECID
DECID |
10 | 8, 9 | syl 14 |
. . . . . . . 8
DECID DECID DECID
|
11 | 10 | imp 123 |
. . . . . . 7
DECID DECID DECID |
12 | 7, 11 | jca 304 |
. . . . . 6
DECID DECID DECID
DECID |
13 | | con2bidc 870 |
. . . . . . 7
DECID DECID
|
14 | 13 | imp 123 |
. . . . . 6
DECID
DECID
|
15 | 12, 14 | syl 14 |
. . . . 5
DECID DECID
|
16 | 15 | biimprd 157 |
. . . 4
DECID DECID
|
17 | 2, 16 | mpd 13 |
. . 3
DECID DECID
|
18 | 17 | bicomd 140 |
. 2
DECID DECID
|
19 | 18 | ex 114 |
1
DECID DECID
|