ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sbanv Unicode version

Theorem sbanv 1877
Description: Version of sban 1943 where  x and  y are distinct. (Contributed by Jim Kingdon, 24-Dec-2017.)
Assertion
Ref Expression
sbanv  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem sbanv
StepHypRef Expression
1 sb6 1874 . 2  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  A. x ( x  =  y  ->  ( ph  /\ 
ps ) ) )
2 sb6 1874 . . . 4  |-  ( [ y  /  x ] ph 
<-> 
A. x ( x  =  y  ->  ph )
)
3 sb6 1874 . . . 4  |-  ( [ y  /  x ] ps 
<-> 
A. x ( x  =  y  ->  ps ) )
42, 3anbi12i 456 . . 3  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) 
<->  ( A. x ( x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ps ) ) )
5 19.26 1469 . . 3  |-  ( A. x ( ( x  =  y  ->  ph )  /\  ( x  =  y  ->  ps ) )  <-> 
( A. x ( x  =  y  ->  ph )  /\  A. x
( x  =  y  ->  ps ) ) )
6 pm4.76 594 . . . 4  |-  ( ( ( x  =  y  ->  ph )  /\  (
x  =  y  ->  ps ) )  <->  ( x  =  y  ->  ( ph  /\ 
ps ) ) )
76albii 1458 . . 3  |-  ( A. x ( ( x  =  y  ->  ph )  /\  ( x  =  y  ->  ps ) )  <->  A. x ( x  =  y  ->  ( ph  /\ 
ps ) ) )
84, 5, 73bitr2i 207 . 2  |-  ( ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) 
<-> 
A. x ( x  =  y  ->  ( ph  /\  ps ) ) )
91, 8bitr4i 186 1  |-  ( [ y  /  x ]
( ph  /\  ps )  <->  ( [ y  /  x ] ph  /\  [ y  /  x ] ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341   [wsb 1750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-sb 1751
This theorem is referenced by:  sban  1943
  Copyright terms: Public domain W3C validator