ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jcab Unicode version

Theorem jcab 575
Description: Distributive law for implication over conjunction. Compare Theorem *4.76 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Apr-1994.) (Proof shortened by Wolf Lammen, 27-Nov-2013.)
Assertion
Ref Expression
jcab  |-  ( (
ph  ->  ( ps  /\  ch ) )  <->  ( ( ph  ->  ps )  /\  ( ph  ->  ch )
) )

Proof of Theorem jcab
StepHypRef Expression
1 simpl 108 . . . 4  |-  ( ( ps  /\  ch )  ->  ps )
21imim2i 12 . . 3  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  ( ph  ->  ps ) )
3 simpr 109 . . . 4  |-  ( ( ps  /\  ch )  ->  ch )
43imim2i 12 . . 3  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  ( ph  ->  ch ) )
52, 4jca 302 . 2  |-  ( (
ph  ->  ( ps  /\  ch ) )  ->  (
( ph  ->  ps )  /\  ( ph  ->  ch ) ) )
6 pm3.43 574 . 2  |-  ( ( ( ph  ->  ps )  /\  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  /\  ch ) ) )
75, 6impbii 125 1  |-  ( (
ph  ->  ( ps  /\  ch ) )  <->  ( ( ph  ->  ps )  /\  ( ph  ->  ch )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm4.76  576  pm5.44  893  2eu4  2068  ssconb  3177  ssin  3266  raaan  3437  tfri3  6230  isprm2  11694
  Copyright terms: Public domain W3C validator