Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fun11 | Unicode version |
Description: Two ways of stating that is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
fun11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 386 | . . . . . . . 8 | |
2 | 1 | imbi2i 225 | . . . . . . 7 |
3 | pm4.76 599 | . . . . . . 7 | |
4 | bi2.04 247 | . . . . . . . 8 | |
5 | bi2.04 247 | . . . . . . . 8 | |
6 | 4, 5 | anbi12i 457 | . . . . . . 7 |
7 | 2, 3, 6 | 3bitr2i 207 | . . . . . 6 |
8 | 7 | 2albii 1464 | . . . . 5 |
9 | 19.26-2 1475 | . . . . 5 | |
10 | alcom 1471 | . . . . . . 7 | |
11 | nfv 1521 | . . . . . . . . 9 | |
12 | breq1 3992 | . . . . . . . . . . 11 | |
13 | 12 | anbi1d 462 | . . . . . . . . . 10 |
14 | 13 | imbi1d 230 | . . . . . . . . 9 |
15 | 11, 14 | equsal 1720 | . . . . . . . 8 |
16 | 15 | albii 1463 | . . . . . . 7 |
17 | 10, 16 | bitri 183 | . . . . . 6 |
18 | nfv 1521 | . . . . . . . 8 | |
19 | breq2 3993 | . . . . . . . . . 10 | |
20 | 19 | anbi1d 462 | . . . . . . . . 9 |
21 | 20 | imbi1d 230 | . . . . . . . 8 |
22 | 18, 21 | equsal 1720 | . . . . . . 7 |
23 | 22 | albii 1463 | . . . . . 6 |
24 | 17, 23 | anbi12i 457 | . . . . 5 |
25 | 8, 9, 24 | 3bitri 205 | . . . 4 |
26 | 25 | 2albii 1464 | . . 3 |
27 | 19.26-2 1475 | . . 3 | |
28 | 26, 27 | bitr2i 184 | . 2 |
29 | fun2cnv 5262 | . . . 4 | |
30 | breq2 3993 | . . . . . 6 | |
31 | 30 | mo4 2080 | . . . . 5 |
32 | 31 | albii 1463 | . . . 4 |
33 | alcom 1471 | . . . . 5 | |
34 | 33 | albii 1463 | . . . 4 |
35 | 29, 32, 34 | 3bitri 205 | . . 3 |
36 | funcnv2 5258 | . . . 4 | |
37 | breq1 3992 | . . . . . 6 | |
38 | 37 | mo4 2080 | . . . . 5 |
39 | 38 | albii 1463 | . . . 4 |
40 | alcom 1471 | . . . . . 6 | |
41 | 40 | albii 1463 | . . . . 5 |
42 | alcom 1471 | . . . . 5 | |
43 | 41, 42 | bitri 183 | . . . 4 |
44 | 36, 39, 43 | 3bitri 205 | . . 3 |
45 | 35, 44 | anbi12i 457 | . 2 |
46 | alrot4 1479 | . 2 | |
47 | 28, 45, 46 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wmo 2020 class class class wbr 3989 ccnv 4610 wfun 5192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-fun 5200 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |