| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fun11 | Unicode version | ||
| Description: Two ways of stating that
|
| Ref | Expression |
|---|---|
| fun11 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 |
. . . . . . . 8
| |
| 2 | 1 | imbi2i 226 |
. . . . . . 7
|
| 3 | pm4.76 604 |
. . . . . . 7
| |
| 4 | bi2.04 248 |
. . . . . . . 8
| |
| 5 | bi2.04 248 |
. . . . . . . 8
| |
| 6 | 4, 5 | anbi12i 460 |
. . . . . . 7
|
| 7 | 2, 3, 6 | 3bitr2i 208 |
. . . . . 6
|
| 8 | 7 | 2albii 1494 |
. . . . 5
|
| 9 | 19.26-2 1505 |
. . . . 5
| |
| 10 | alcom 1501 |
. . . . . . 7
| |
| 11 | nfv 1551 |
. . . . . . . . 9
| |
| 12 | breq1 4047 |
. . . . . . . . . . 11
| |
| 13 | 12 | anbi1d 465 |
. . . . . . . . . 10
|
| 14 | 13 | imbi1d 231 |
. . . . . . . . 9
|
| 15 | 11, 14 | equsal 1750 |
. . . . . . . 8
|
| 16 | 15 | albii 1493 |
. . . . . . 7
|
| 17 | 10, 16 | bitri 184 |
. . . . . 6
|
| 18 | nfv 1551 |
. . . . . . . 8
| |
| 19 | breq2 4048 |
. . . . . . . . . 10
| |
| 20 | 19 | anbi1d 465 |
. . . . . . . . 9
|
| 21 | 20 | imbi1d 231 |
. . . . . . . 8
|
| 22 | 18, 21 | equsal 1750 |
. . . . . . 7
|
| 23 | 22 | albii 1493 |
. . . . . 6
|
| 24 | 17, 23 | anbi12i 460 |
. . . . 5
|
| 25 | 8, 9, 24 | 3bitri 206 |
. . . 4
|
| 26 | 25 | 2albii 1494 |
. . 3
|
| 27 | 19.26-2 1505 |
. . 3
| |
| 28 | 26, 27 | bitr2i 185 |
. 2
|
| 29 | fun2cnv 5338 |
. . . 4
| |
| 30 | breq2 4048 |
. . . . . 6
| |
| 31 | 30 | mo4 2115 |
. . . . 5
|
| 32 | 31 | albii 1493 |
. . . 4
|
| 33 | alcom 1501 |
. . . . 5
| |
| 34 | 33 | albii 1493 |
. . . 4
|
| 35 | 29, 32, 34 | 3bitri 206 |
. . 3
|
| 36 | funcnv2 5334 |
. . . 4
| |
| 37 | breq1 4047 |
. . . . . 6
| |
| 38 | 37 | mo4 2115 |
. . . . 5
|
| 39 | 38 | albii 1493 |
. . . 4
|
| 40 | alcom 1501 |
. . . . . 6
| |
| 41 | 40 | albii 1493 |
. . . . 5
|
| 42 | alcom 1501 |
. . . . 5
| |
| 43 | 41, 42 | bitri 184 |
. . . 4
|
| 44 | 36, 39, 43 | 3bitri 206 |
. . 3
|
| 45 | 35, 44 | anbi12i 460 |
. 2
|
| 46 | alrot4 1509 |
. 2
| |
| 47 | 28, 45, 46 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-fun 5273 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |