ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21 Unicode version

Theorem r19.21 2542
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.)
Hypothesis
Ref Expression
r19.21.1  |-  F/ x ph
Assertion
Ref Expression
r19.21  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )

Proof of Theorem r19.21
StepHypRef Expression
1 r19.21.1 . 2  |-  F/ x ph
2 r19.21t 2541 . 2  |-  ( F/ x ph  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  (
ph  ->  A. x  e.  A  ps ) ) )
31, 2ax-mp 5 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   F/wnf 1448   A.wral 2444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-ral 2449
This theorem is referenced by:  r19.21v  2543  rmo3f  2923
  Copyright terms: Public domain W3C validator