ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v Unicode version

Theorem r19.21v 2571
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1539 . 2  |-  F/ x ph
21r19.21 2570 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-4 1521  ax-17 1537  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-ral 2477
This theorem is referenced by:  r19.32vdc  2643  rmo4  2954  rmo3  3078  dftr5  4131  reusv3  4492  tfrlem1  6363  tfrlemi1  6387  tfr1onlemaccex  6403  tfrcllemaccex  6416  tfri3  6422  ordiso2  7096  raluz2  9647  ndvdssub  12074  nninfalllem1  15568  nninfsellemqall  15575
  Copyright terms: Public domain W3C validator