ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21v Unicode version

Theorem r19.21v 2585
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.21v  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.21v
StepHypRef Expression
1 nfv 1552 . 2  |-  F/ x ph
21r19.21 2584 1  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wral 2486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-ral 2491
This theorem is referenced by:  r19.32vdc  2657  rmo4  2973  rmo3  3098  dftr5  4161  reusv3  4525  tfrlem1  6417  tfrlemi1  6441  tfr1onlemaccex  6457  tfrcllemaccex  6470  tfri3  6476  ordiso2  7163  raluz2  9735  ndvdssub  12356  nninfalllem1  16147  nninfsellemqall  16154
  Copyright terms: Public domain W3C validator