ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21t Unicode version

Theorem r19.21t 2532
Description: Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.)
Assertion
Ref Expression
r19.21t  |-  ( F/ x ph  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  (
ph  ->  A. x  e.  A  ps ) ) )

Proof of Theorem r19.21t
StepHypRef Expression
1 bi2.04 247 . . . 4  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ph  ->  ( x  e.  A  ->  ps ) ) )
21albii 1450 . . 3  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ph  ->  ( x  e.  A  ->  ps ) ) )
3 19.21t 1562 . . 3  |-  ( F/ x ph  ->  ( A. x ( ph  ->  ( x  e.  A  ->  ps ) )  <->  ( ph  ->  A. x ( x  e.  A  ->  ps ) ) ) )
42, 3syl5bb 191 . 2  |-  ( F/ x ph  ->  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  ( ph  ->  A. x ( x  e.  A  ->  ps ) ) ) )
5 df-ral 2440 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
6 df-ral 2440 . . 3  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
76imbi2i 225 . 2  |-  ( (
ph  ->  A. x  e.  A  ps )  <->  ( ph  ->  A. x ( x  e.  A  ->  ps )
) )
84, 5, 73bitr4g 222 1  |-  ( F/ x ph  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  (
ph  ->  A. x  e.  A  ps ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333   F/wnf 1440    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-ral 2440
This theorem is referenced by:  r19.21  2533
  Copyright terms: Public domain W3C validator