| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rmo3f | Unicode version | ||
| Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) | 
| Ref | Expression | 
|---|---|
| rmo3f.1 | 
 | 
| rmo3f.2 | 
 | 
| rmo3f.3 | 
 | 
| Ref | Expression | 
|---|---|
| rmo3f | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rmo 2483 | 
. 2
 | |
| 2 | sban 1974 | 
. . . . . . . . . . 11
 | |
| 3 | rmo3f.1 | 
. . . . . . . . . . . . 13
 | |
| 4 | 3 | clelsb1f 2343 | 
. . . . . . . . . . . 12
 | 
| 5 | 4 | anbi1i 458 | 
. . . . . . . . . . 11
 | 
| 6 | 2, 5 | bitri 184 | 
. . . . . . . . . 10
 | 
| 7 | 6 | anbi2i 457 | 
. . . . . . . . 9
 | 
| 8 | an4 586 | 
. . . . . . . . 9
 | |
| 9 | ancom 266 | 
. . . . . . . . . 10
 | |
| 10 | 9 | anbi1i 458 | 
. . . . . . . . 9
 | 
| 11 | 7, 8, 10 | 3bitri 206 | 
. . . . . . . 8
 | 
| 12 | 11 | imbi1i 238 | 
. . . . . . 7
 | 
| 13 | impexp 263 | 
. . . . . . 7
 | |
| 14 | impexp 263 | 
. . . . . . 7
 | |
| 15 | 12, 13, 14 | 3bitri 206 | 
. . . . . 6
 | 
| 16 | 15 | albii 1484 | 
. . . . 5
 | 
| 17 | df-ral 2480 | 
. . . . 5
 | |
| 18 | rmo3f.2 | 
. . . . . . 7
 | |
| 19 | 18 | nfcri 2333 | 
. . . . . 6
 | 
| 20 | 19 | r19.21 2573 | 
. . . . 5
 | 
| 21 | 16, 17, 20 | 3bitr2i 208 | 
. . . 4
 | 
| 22 | 21 | albii 1484 | 
. . 3
 | 
| 23 | rmo3f.3 | 
. . . . 5
 | |
| 24 | 19, 23 | nfan 1579 | 
. . . 4
 | 
| 25 | 24 | mo3 2099 | 
. . 3
 | 
| 26 | df-ral 2480 | 
. . 3
 | |
| 27 | 22, 25, 26 | 3bitr4i 212 | 
. 2
 | 
| 28 | 1, 27 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rmo 2483 | 
| This theorem is referenced by: rmo4f 2962 | 
| Copyright terms: Public domain | W3C validator |