ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo3f Unicode version

Theorem rmo3f 2935
Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
Hypotheses
Ref Expression
rmo3f.1  |-  F/_ x A
rmo3f.2  |-  F/_ y A
rmo3f.3  |-  F/ y
ph
Assertion
Ref Expression
rmo3f  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    A( x, y)

Proof of Theorem rmo3f
StepHypRef Expression
1 df-rmo 2463 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
2 sban 1955 . . . . . . . . . . 11  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( [
y  /  x ]
x  e.  A  /\  [ y  /  x ] ph ) )
3 rmo3f.1 . . . . . . . . . . . . 13  |-  F/_ x A
43clelsb1f 2323 . . . . . . . . . . . 12  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
54anbi1i 458 . . . . . . . . . . 11  |-  ( ( [ y  /  x ] x  e.  A  /\  [ y  /  x ] ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
62, 5bitri 184 . . . . . . . . . 10  |-  ( [ y  /  x ]
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) )
76anbi2i 457 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
x  e.  A  /\  ph )  /\  ( y  e.  A  /\  [
y  /  x ] ph ) ) )
8 an4 586 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  /\  (
y  e.  A  /\  [ y  /  x ] ph ) )  <->  ( (
x  e.  A  /\  y  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
9 ancom 266 . . . . . . . . . 10  |-  ( ( x  e.  A  /\  y  e.  A )  <->  ( y  e.  A  /\  x  e.  A )
)
109anbi1i 458 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
117, 8, 103bitri 206 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  <->  ( (
y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [
y  /  x ] ph ) ) )
1211imbi1i 238 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( (
( y  e.  A  /\  x  e.  A
)  /\  ( ph  /\ 
[ y  /  x ] ph ) )  ->  x  =  y )
)
13 impexp 263 . . . . . . 7  |-  ( ( ( ( y  e.  A  /\  x  e.  A )  /\  ( ph  /\  [ y  /  x ] ph ) )  ->  x  =  y )  <->  ( ( y  e.  A  /\  x  e.  A )  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) )
14 impexp 263 . . . . . . 7  |-  ( ( ( y  e.  A  /\  x  e.  A
)  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
)  <->  ( y  e.  A  ->  ( x  e.  A  ->  ( (
ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1512, 13, 143bitri 206 . . . . . 6  |-  ( ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y )  <->  ( y  e.  A  ->  ( x  e.  A  ->  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
1615albii 1470 . . . . 5  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
17 df-ral 2460 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  A. y
( y  e.  A  ->  ( x  e.  A  ->  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) ) ) )
18 rmo3f.2 . . . . . . 7  |-  F/_ y A
1918nfcri 2313 . . . . . 6  |-  F/ y  x  e.  A
2019r19.21 2553 . . . . 5  |-  ( A. y  e.  A  (
x  e.  A  -> 
( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2116, 17, 203bitr2i 208 . . . 4  |-  ( A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2221albii 1470 . . 3  |-  ( A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [
y  /  x ]
( x  e.  A  /\  ph ) )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
23 rmo3f.3 . . . . 5  |-  F/ y
ph
2419, 23nfan 1565 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
2524mo3 2080 . . 3  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x A. y ( ( ( x  e.  A  /\  ph )  /\  [ y  /  x ] ( x  e.  A  /\  ph )
)  ->  x  =  y ) )
26 df-ral 2460 . . 3  |-  ( A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  A. y  e.  A  ( ( ph  /\  [ y  /  x ] ph )  ->  x  =  y )
) )
2722, 25, 263bitr4i 212 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
281, 27bitri 184 1  |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  (
( ph  /\  [ y  /  x ] ph )  ->  x  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   A.wal 1351   F/wnf 1460   [wsb 1762   E*wmo 2027    e. wcel 2148   F/_wnfc 2306   A.wral 2455   E*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rmo 2463
This theorem is referenced by:  rmo4f  2936
  Copyright terms: Public domain W3C validator