| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rmo3f | Unicode version | ||
| Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.) |
| Ref | Expression |
|---|---|
| rmo3f.1 |
|
| rmo3f.2 |
|
| rmo3f.3 |
|
| Ref | Expression |
|---|---|
| rmo3f |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2491 |
. 2
| |
| 2 | sban 1982 |
. . . . . . . . . . 11
| |
| 3 | rmo3f.1 |
. . . . . . . . . . . . 13
| |
| 4 | 3 | clelsb1f 2351 |
. . . . . . . . . . . 12
|
| 5 | 4 | anbi1i 458 |
. . . . . . . . . . 11
|
| 6 | 2, 5 | bitri 184 |
. . . . . . . . . 10
|
| 7 | 6 | anbi2i 457 |
. . . . . . . . 9
|
| 8 | an4 586 |
. . . . . . . . 9
| |
| 9 | ancom 266 |
. . . . . . . . . 10
| |
| 10 | 9 | anbi1i 458 |
. . . . . . . . 9
|
| 11 | 7, 8, 10 | 3bitri 206 |
. . . . . . . 8
|
| 12 | 11 | imbi1i 238 |
. . . . . . 7
|
| 13 | impexp 263 |
. . . . . . 7
| |
| 14 | impexp 263 |
. . . . . . 7
| |
| 15 | 12, 13, 14 | 3bitri 206 |
. . . . . 6
|
| 16 | 15 | albii 1492 |
. . . . 5
|
| 17 | df-ral 2488 |
. . . . 5
| |
| 18 | rmo3f.2 |
. . . . . . 7
| |
| 19 | 18 | nfcri 2341 |
. . . . . 6
|
| 20 | 19 | r19.21 2581 |
. . . . 5
|
| 21 | 16, 17, 20 | 3bitr2i 208 |
. . . 4
|
| 22 | 21 | albii 1492 |
. . 3
|
| 23 | rmo3f.3 |
. . . . 5
| |
| 24 | 19, 23 | nfan 1587 |
. . . 4
|
| 25 | 24 | mo3 2107 |
. . 3
|
| 26 | df-ral 2488 |
. . 3
| |
| 27 | 22, 25, 26 | 3bitr4i 212 |
. 2
|
| 28 | 1, 27 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rmo 2491 |
| This theorem is referenced by: rmo4f 2970 |
| Copyright terms: Public domain | W3C validator |