| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ra5 | Unicode version | ||
| Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1598. (Contributed by NM, 16-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| ra5.1 | 
 | 
| Ref | Expression | 
|---|---|
| ra5 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. . . 4
 | |
| 2 | bi2.04 248 | 
. . . . 5
 | |
| 3 | 2 | albii 1484 | 
. . . 4
 | 
| 4 | 1, 3 | bitri 184 | 
. . 3
 | 
| 5 | ra5.1 | 
. . . 4
 | |
| 6 | 5 | stdpc5 1598 | 
. . 3
 | 
| 7 | 4, 6 | sylbi 121 | 
. 2
 | 
| 8 | df-ral 2480 | 
. 2
 | |
| 9 | 7, 8 | imbitrrdi 162 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-ral 2480 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |