ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ra5 Unicode version

Theorem ra5 3025
Description: Restricted quantifier version of Axiom 5 of [Mendelson] p. 69. This is an axiom of a predicate calculus for a restricted domain. Compare the unrestricted stdpc5 1564. (Contributed by NM, 16-Jan-2004.)
Hypothesis
Ref Expression
ra5.1  |-  F/ x ph
Assertion
Ref Expression
ra5  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( ph  ->  A. x  e.  A  ps )
)

Proof of Theorem ra5
StepHypRef Expression
1 df-ral 2440 . . . 4  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( x  e.  A  ->  ( ph  ->  ps ) ) )
2 bi2.04 247 . . . . 5  |-  ( ( x  e.  A  -> 
( ph  ->  ps )
)  <->  ( ph  ->  ( x  e.  A  ->  ps ) ) )
32albii 1450 . . . 4  |-  ( A. x ( x  e.  A  ->  ( ph  ->  ps ) )  <->  A. x
( ph  ->  ( x  e.  A  ->  ps ) ) )
41, 3bitri 183 . . 3  |-  ( A. x  e.  A  ( ph  ->  ps )  <->  A. x
( ph  ->  ( x  e.  A  ->  ps ) ) )
5 ra5.1 . . . 4  |-  F/ x ph
65stdpc5 1564 . . 3  |-  ( A. x ( ph  ->  ( x  e.  A  ->  ps ) )  ->  ( ph  ->  A. x ( x  e.  A  ->  ps ) ) )
74, 6sylbi 120 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( ph  ->  A. x
( x  e.  A  ->  ps ) ) )
8 df-ral 2440 . 2  |-  ( A. x  e.  A  ps  <->  A. x ( x  e.  A  ->  ps )
)
97, 8syl6ibr 161 1  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( ph  ->  A. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1333   F/wnf 1440    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-4 1490  ax-ial 1514  ax-i5r 1515
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-ral 2440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator