Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rmo2ilem | Unicode version |
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
Ref | Expression |
---|---|
rmo2.1 |
Ref | Expression |
---|---|
rmo2ilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 261 | . . . . 5 | |
2 | 1 | albii 1463 | . . . 4 |
3 | df-ral 2453 | . . . 4 | |
4 | 2, 3 | bitr4i 186 | . . 3 |
5 | 4 | exbii 1598 | . 2 |
6 | nfv 1521 | . . . . 5 | |
7 | rmo2.1 | . . . . 5 | |
8 | 6, 7 | nfan 1558 | . . . 4 |
9 | 8 | mo2r 2071 | . . 3 |
10 | df-rmo 2456 | . . 3 | |
11 | 9, 10 | sylibr 133 | . 2 |
12 | 5, 11 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1346 wceq 1348 wnf 1453 wex 1485 wmo 2020 wcel 2141 wral 2448 wrmo 2451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-ral 2453 df-rmo 2456 |
This theorem is referenced by: rmo2i 3045 |
Copyright terms: Public domain | W3C validator |