ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem Unicode version

Theorem rmo2ilem 3067
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2ilem  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 263 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
21albii 1481 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
3 df-ral 2473 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
42, 3bitr4i 187 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
54exbii 1616 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
6 nfv 1539 . . . . 5  |-  F/ y  x  e.  A
7 rmo2.1 . . . . 5  |-  F/ y
ph
86, 7nfan 1576 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
98mo2r 2090 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x ( x  e.  A  /\  ph )
)
10 df-rmo 2476 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
119, 10sylibr 134 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x  e.  A  ph )
125, 11sylbir 135 1  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   F/wnf 1471   E.wex 1503   E*wmo 2039    e. wcel 2160   A.wral 2468   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-ral 2473  df-rmo 2476
This theorem is referenced by:  rmo2i  3068
  Copyright terms: Public domain W3C validator