ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem Unicode version

Theorem rmo2ilem 3044
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2ilem  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 261 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
21albii 1463 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
3 df-ral 2453 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
42, 3bitr4i 186 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
54exbii 1598 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
6 nfv 1521 . . . . 5  |-  F/ y  x  e.  A
7 rmo2.1 . . . . 5  |-  F/ y
ph
86, 7nfan 1558 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
98mo2r 2071 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x ( x  e.  A  /\  ph )
)
10 df-rmo 2456 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
119, 10sylibr 133 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x  e.  A  ph )
125, 11sylbir 134 1  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1346    = wceq 1348   F/wnf 1453   E.wex 1485   E*wmo 2020    e. wcel 2141   A.wral 2448   E*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-ral 2453  df-rmo 2456
This theorem is referenced by:  rmo2i  3045
  Copyright terms: Public domain W3C validator