| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rmo2ilem | Unicode version | ||
| Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| rmo2.1 | 
 | 
| Ref | Expression | 
|---|---|
| rmo2ilem | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | impexp 263 | 
. . . . 5
 | |
| 2 | 1 | albii 1484 | 
. . . 4
 | 
| 3 | df-ral 2480 | 
. . . 4
 | |
| 4 | 2, 3 | bitr4i 187 | 
. . 3
 | 
| 5 | 4 | exbii 1619 | 
. 2
 | 
| 6 | nfv 1542 | 
. . . . 5
 | |
| 7 | rmo2.1 | 
. . . . 5
 | |
| 8 | 6, 7 | nfan 1579 | 
. . . 4
 | 
| 9 | 8 | mo2r 2097 | 
. . 3
 | 
| 10 | df-rmo 2483 | 
. . 3
 | |
| 11 | 9, 10 | sylibr 134 | 
. 2
 | 
| 12 | 5, 11 | sylbir 135 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-ral 2480 df-rmo 2483 | 
| This theorem is referenced by: rmo2i 3080 | 
| Copyright terms: Public domain | W3C validator |