Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rmo2ilem | Unicode version |
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.) |
Ref | Expression |
---|---|
rmo2.1 |
Ref | Expression |
---|---|
rmo2ilem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 261 | . . . . 5 | |
2 | 1 | albii 1458 | . . . 4 |
3 | df-ral 2449 | . . . 4 | |
4 | 2, 3 | bitr4i 186 | . . 3 |
5 | 4 | exbii 1593 | . 2 |
6 | nfv 1516 | . . . . 5 | |
7 | rmo2.1 | . . . . 5 | |
8 | 6, 7 | nfan 1553 | . . . 4 |
9 | 8 | mo2r 2066 | . . 3 |
10 | df-rmo 2452 | . . 3 | |
11 | 9, 10 | sylibr 133 | . 2 |
12 | 5, 11 | sylbir 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wal 1341 wceq 1343 wnf 1448 wex 1480 wmo 2015 wcel 2136 wral 2444 wrmo 2447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-ral 2449 df-rmo 2452 |
This theorem is referenced by: rmo2i 3041 |
Copyright terms: Public domain | W3C validator |