ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo2ilem Unicode version

Theorem rmo2ilem 3054
Description: Condition implying restricted at-most-one quantifier. (Contributed by Jim Kingdon, 14-Jul-2018.)
Hypothesis
Ref Expression
rmo2.1  |-  F/ y
ph
Assertion
Ref Expression
rmo2ilem  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Distinct variable group:    x, y, A
Allowed substitution hints:    ph( x, y)

Proof of Theorem rmo2ilem
StepHypRef Expression
1 impexp 263 . . . . 5  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
21albii 1470 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
3 df-ral 2460 . . . 4  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
42, 3bitr4i 187 . . 3  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x  e.  A  ( ph  ->  x  =  y ) )
54exbii 1605 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
6 nfv 1528 . . . . 5  |-  F/ y  x  e.  A
7 rmo2.1 . . . . 5  |-  F/ y
ph
86, 7nfan 1565 . . . 4  |-  F/ y ( x  e.  A  /\  ph )
98mo2r 2078 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x ( x  e.  A  /\  ph )
)
10 df-rmo 2463 . . 3  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
119, 10sylibr 134 . 2  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  ->  E* x  e.  A  ph )
125, 11sylbir 135 1  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1351    = wceq 1353   F/wnf 1460   E.wex 1492   E*wmo 2027    e. wcel 2148   A.wral 2455   E*wrmo 2458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-ral 2460  df-rmo 2463
This theorem is referenced by:  rmo2i  3055
  Copyright terms: Public domain W3C validator