HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrmo4f 3001* Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by Thierry Arnoux, 11-Oct-2016.) (Revised by Thierry Arnoux, 8-Mar-2017.) (Revised by Thierry Arnoux, 8-Oct-2017.)
 |-  F/_ x A   &    |-  F/_ y A   &    |-  F/ x ps   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( E* x  e.  A  ph  <->  A. x  e.  A  A. y  e.  A  ( ( ph  /\  ps )  ->  x  =  y ) )
 
Theoremreueq 3002* Equality has existential uniqueness. (Contributed by Mario Carneiro, 1-Sep-2015.)
 |-  ( B  e.  A  <->  E! x  e.  A  x  =  B )
 
Theoremrmoan 3003 Restricted "at most one" still holds when a conjunct is added. (Contributed by NM, 16-Jun-2017.)
 |-  ( E* x  e.  A  ph  ->  E* x  e.  A  ( ps  /\  ph ) )
 
Theoremrmoim 3004 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( E* x  e.  A  ps  ->  E* x  e.  A  ph ) )
 
Theoremrmoimia 3005 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( E* x  e.  A  ps  ->  E* x  e.  A  ph )
 
Theoremrmoimi2 3006 Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |- 
 A. x ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps )
 )   =>    |-  ( E* x  e.  B  ps  ->  E* x  e.  A  ph )
 
Theorem2reuswapdc 3007* A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Thierry Arnoux, 7-Apr-2017.) (Revised by NM, 16-Jun-2017.)
 |-  (DECID 
 E. x E. y
 ( x  e.  A  /\  ( y  e.  B  /\  ph ) )  ->  ( A. x  e.  A  E* y  e.  B  ph 
 ->  ( E! x  e.  A  E. y  e.  B  ph  ->  E! y  e.  B  E. x  e.  A  ph ) ) )
 
Theoremreuind 3008* Existential uniqueness via an indirect equality. (Contributed by NM, 16-Oct-2010.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( x  =  y  ->  A  =  B )   =>    |-  ( ( A. x A. y ( ( ( A  e.  C  /\  ph )  /\  ( B  e.  C  /\  ps ) )  ->  A  =  B )  /\  E. x ( A  e.  C  /\  ph ) )  ->  E! z  e.  C  A. x ( ( A  e.  C  /\  ph )  ->  z  =  A ) )
 
Theorem2rmorex 3009* Double restricted quantification with "at most one," analogous to 2moex 2164. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
 |-  ( E* x  e.  A  E. y  e.  B  ph  ->  A. y  e.  B  E* x  e.  A  ph )
 
Theoremnelrdva 3010* Deduce negative membership from an implication. (Contributed by Thierry Arnoux, 27-Nov-2017.)
 |-  ( ( ph  /\  x  e.  A )  ->  x  =/=  B )   =>    |-  ( ph  ->  -.  B  e.  A )
 
2.1.7  Conditional equality (experimental)

This is a very useless definition, which "abbreviates"  ( x  =  y  ->  ph ) as CondEq ( x  =  y  ->  ph ). What this display hides, though, is that the first expression, even though it has a shorter constant string, is actually much more complicated in its parse tree: it is parsed as (wi (wceq (cv vx) (cv vy)) wph), while the CondEq version is parsed as (wcdeq vx vy wph). It also allows us to give a name to the specific ternary operation  ( x  =  y  ->  ph ).

This is all used as part of a metatheorem: we want to say that  |-  ( x  =  y  ->  ( ph ( x )  <->  ph ( y ) ) ) and  |-  ( x  =  y  ->  A
( x )  =  A ( y ) ) are provable, for any expressions  ph ( x ) or  A ( x ) in the language. The proof is by induction, so the base case is each of the primitives, which is why you will see a theorem for each of the set.mm primitive operations.

The metatheorem comes with a disjoint variables condition: every variable in  ph ( x ) is assumed disjoint from 
x except  x itself. For such a proof by induction, we must consider each of the possible forms of  ph ( x ). If it is a variable other than  x, then we have CondEq ( x  =  y  ->  A  =  A ) or CondEq ( x  =  y  ->  ( ph  <->  ph ) ), which is provable by cdeqth 3015 and reflexivity. Since we are only working with class and wff expressions, it can't be  x itself in set.mm, but if it was we'd have to also prove CondEq
( x  =  y  ->  x  =  y ) (where set equality is being used on the right).

Otherwise, it is a primitive operation applied to smaller expressions. In these cases, for each setvar variable parameter to the operation, we must consider if it is equal to  x or not, which yields 2^n proof obligations. Luckily, all primitive operations in set.mm have either zero or one set variable, so we only need to prove one statement for the non-set constructors (like implication) and two for the constructors taking a set (the forall and the class builder).

In each of the primitive proofs, we are allowed to assume that  y is disjoint from  ph ( x ) and vice versa, because this is maintained through the induction. This is how we satisfy the disjoint variable conditions of cdeqab1 3020 and cdeqab 3018.

 
Syntaxwcdeq 3011 Extend wff notation to include conditional equality. This is a technical device used in the proof that 
F/ is the not-free predicate, and that definitions are conservative as a result.
 wff CondEq ( x  =  y 
 ->  ph )
 
Definitiondf-cdeq 3012 Define conditional equality. All the notation to the left of the  <-> is fake; the parentheses and arrows are all part of the notation, which could equally well be written CondEq x y ph. On the right side is the actual implication arrow. The reason for this definition is to "flatten" the structure on the right side (whose tree structure is something like (wi (wceq (cv vx) (cv vy)) wph) ) into just (wcdeq vx vy wph). (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  (CondEq ( x  =  y  ->  ph )  <->  ( x  =  y  ->  ph ) )
 
Theoremcdeqi 3013 Deduce conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ( x  =  y 
 ->  ph )   =>    |- CondEq ( x  =  y  -> 
 ph )
 
Theoremcdeqri 3014 Property of conditional equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  -> 
 ph )   =>    |-  ( x  =  y 
 ->  ph )
 
Theoremcdeqth 3015 Deduce conditional equality from a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  ph   =>    |- CondEq ( x  =  y  -> 
 ph )
 
Theoremcdeqnot 3016 Distribute conditional equality over negation. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( -.  ph  <->  -. 
 ps ) )
 
Theoremcdeqal 3017* Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( A. z ph  <->  A. z ps )
 )
 
Theoremcdeqab 3018* Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  { z  |  ph }  =  {
 z  |  ps }
 )
 
Theoremcdeqal1 3019* Distribute conditional equality over quantification. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  ( A. x ph  <->  A. y ps )
 )
 
Theoremcdeqab1 3020* Distribute conditional equality over abstraction. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |- CondEq ( x  =  y  ->  { x  |  ph }  =  {
 y  |  ps }
 )
 
Theoremcdeqim 3021 Distribute conditional equality over implication. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   &    |- CondEq ( x  =  y  ->  ( ch 
 <-> 
 th ) )   =>    |- CondEq ( x  =  y  ->  ( ( ph  ->  ch )  <->  ( ps  ->  th ) ) )
 
Theoremcdeqcv 3022 Conditional equality for set-to-class promotion. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  x  =  y )
 
Theoremcdeqeq 3023 Distribute conditional equality over equality. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  A  =  B )   &    |- CondEq ( x  =  y  ->  C  =  D )   =>    |- CondEq ( x  =  y  ->  ( A  =  C  <->  B  =  D ) )
 
Theoremcdeqel 3024 Distribute conditional equality over elementhood. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- CondEq ( x  =  y  ->  A  =  B )   &    |- CondEq ( x  =  y  ->  C  =  D )   =>    |- CondEq ( x  =  y  ->  ( A  e.  C  <->  B  e.  D ) )
 
Theoremnfcdeq 3025* If we have a conditional equality proof, where  ph is  ph ( x ) and  ps is  ph (
y ), and  ph (
x ) in fact does not have  x free in it according to  F/, then  ph ( x )  <->  ph ( y ) unconditionally. This proves that  F/ x ph is actually a not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   &    |- CondEq ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( ph  <->  ps )
 
Theoremnfccdeq 3026* Variation of nfcdeq 3025 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |-  F/_ x A   &    |- CondEq ( x  =  y  ->  A  =  B )   =>    |-  A  =  B
 
2.1.8  Russell's Paradox
 
Theoremru 3027 Russell's Paradox. Proposition 4.14 of [TakeutiZaring] p. 14.

In the late 1800s, Frege's Axiom of (unrestricted) Comprehension, expressed in our notation as 
A  e.  _V, asserted that any collection of sets  A is a set i.e. belongs to the universe 
_V of all sets. In particular, by substituting  { x  |  x  e/  x } (the "Russell class") for  A, it asserted  { x  |  x  e/  x }  e.  _V, meaning that the "collection of all sets which are not members of themselves" is a set. However, here we prove  { x  |  x  e/  x }  e/  _V. This contradiction was discovered by Russell in 1901 (published in 1903), invalidating the Comprehension Axiom and leading to the collapse of Frege's system.

In 1908, Zermelo rectified this fatal flaw by replacing Comprehension with a weaker Subset (or Separation) Axiom asserting that  A is a set only when it is smaller than some other set  B. The intuitionistic set theory IZF includes such a separation axiom, Axiom 6 of [Crosilla] p. "Axioms of CZF and IZF", which we include as ax-sep 4201. (Contributed by NM, 7-Aug-1994.)

 |- 
 { x  |  x  e/  x }  e/  _V
 
2.1.9  Proper substitution of classes for sets
 
Syntaxwsbc 3028 Extend wff notation to include the proper substitution of a class for a set. Read this notation as "the proper substitution of class  A for setvar variable  x in wff  ph".
 wff  [. A  /  x ].
 ph
 
Definitiondf-sbc 3029 Define the proper substitution of a class for a set.

When  A is a proper class, our definition evaluates to false. This is somewhat arbitrary: we could have, instead, chosen the conclusion of sbc6 3054 for our definition, which always evaluates to true for proper classes.

Our definition also does not produce the same results as discussed in the proof of Theorem 6.6 of [Quine] p. 42 (although Theorem 6.6 itself does hold, as shown by dfsbcq 3030 below). Unfortunately, Quine's definition requires a recursive syntactical breakdown of  ph, and it does not seem possible to express it with a single closed formula.

If we did not want to commit to any specific proper class behavior, we could use this definition only to prove Theorem dfsbcq 3030, which holds for both our definition and Quine's, and from which we can derive a weaker version of df-sbc 3029 in the form of sbc8g 3036. However, the behavior of Quine's definition at proper classes is similarly arbitrary, and for practical reasons (to avoid having to prove sethood of  A in every use of this definition) we allow direct reference to df-sbc 3029 and assert that  [. A  /  x ]. ph is always false when  A is a proper class.

The related definition df-csb defines proper substitution into a class variable (as opposed to a wff variable). (Contributed by NM, 14-Apr-1995.) (Revised by NM, 25-Dec-2016.)

 |-  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } )
 
Theoremdfsbcq 3030 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, provides us with a weak definition of the proper substitution of a class for a set. Since our df-sbc 3029 does not result in the same behavior as Quine's for proper classes, if we wished to avoid conflict with Quine's definition we could start with this theorem and dfsbcq2 3031 instead of df-sbc 3029. (dfsbcq2 3031 is needed because unlike Quine we do not overload the df-sb 1809 syntax.) As a consequence of these theorems, we can derive sbc8g 3036, which is a weaker version of df-sbc 3029 that leaves substitution undefined when  A is a proper class.

However, it is often a nuisance to have to prove the sethood hypothesis of sbc8g 3036, so we will allow direct use of df-sbc 3029. Proper substiution with a proper class is rarely needed, and when it is, we can simply use the expansion of Quine's definition. (Contributed by NM, 14-Apr-1995.)

 |-  ( A  =  B  ->  ( [. A  /  x ]. ph  <->  [. B  /  x ].
 ph ) )
 
Theoremdfsbcq2 3031 This theorem, which is similar to Theorem 6.7 of [Quine] p. 42 and holds under both our definition and Quine's, relates logic substitution df-sb 1809 and substitution for class variables df-sbc 3029. Unlike Quine, we use a different syntax for each in order to avoid overloading it. See remarks in dfsbcq 3030. (Contributed by NM, 31-Dec-2016.)
 |-  ( y  =  A  ->  ( [ y  /  x ] ph  <->  [. A  /  x ].
 ph ) )
 
Theoremsbsbc 3032 Show that df-sb 1809 and df-sbc 3029 are equivalent when the class term  A in df-sbc 3029 is a setvar variable. This theorem lets us reuse theorems based on df-sb 1809 for proofs involving df-sbc 3029. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.)
 |-  ( [ y  /  x ] ph  <->  [. y  /  x ].
 ph )
 
Theoremsbceq1d 3033 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( [. A  /  x ].
 ps 
 <-> 
 [. B  /  x ].
 ps ) )
 
Theoremsbceq1dd 3034 Equality theorem for class substitution. (Contributed by Mario Carneiro, 9-Feb-2017.) (Revised by NM, 30-Jun-2018.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  [. A  /  x ]. ps )   =>    |-  ( ph  ->  [. B  /  x ]. ps )
 
Theoremsbceqbid 3035* Equality theorem for class substitution. (Contributed by Thierry Arnoux, 4-Sep-2018.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <-> 
 [. B  /  x ].
 ch ) )
 
Theoremsbc8g 3036 This is the closest we can get to df-sbc 3029 if we start from dfsbcq 3030 (see its comments) and dfsbcq2 3031. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A  e.  { x  |  ph } ) )
 
Theoremsbcex 3037 By our definition of proper substitution, it can only be true if the substituted expression is a set. (Contributed by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  x ]. ph  ->  A  e.  _V )
 
Theoremsbceq1a 3038 Equality theorem for class substitution. Class version of sbequ12 1817. (Contributed by NM, 26-Sep-2003.)
 |-  ( x  =  A  ->  ( ph  <->  [. A  /  x ].
 ph ) )
 
Theoremsbceq2a 3039 Equality theorem for class substitution. Class version of sbequ12r 1818. (Contributed by NM, 4-Jan-2017.)
 |-  ( A  =  x 
 ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremspsbc 3040 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1821 and rspsbc 3112. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( A. x ph  -> 
 [. A  /  x ].
 ph ) )
 
Theoremspsbcd 3041 Specialization: if a formula is true for all sets, it is true for any class which is a set. Similar to Theorem 6.11 of [Quine] p. 44. See also stdpc4 1821 and rspsbc 3112. (Contributed by Mario Carneiro, 9-Feb-2017.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A. x ps )   =>    |-  ( ph  ->  [. A  /  x ]. ps )
 
Theoremsbcth 3042 A substitution into a theorem remains true (when  A is a set). (Contributed by NM, 5-Nov-2005.)
 |-  ph   =>    |-  ( A  e.  V  -> 
 [. A  /  x ].
 ph )
 
Theoremsbcthdv 3043* Deduction version of sbcth 3042. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( ph  ->  ps )   =>    |-  (
 ( ph  /\  A  e.  V )  ->  [. A  /  x ]. ps )
 
Theoremsbcid 3044 An identity theorem for substitution. See sbid 1820. (Contributed by Mario Carneiro, 18-Feb-2017.)
 |-  ( [. x  /  x ]. ph  <->  ph )
 
Theoremnfsbc1d 3045 Deduction version of nfsbc1 3046. (Contributed by NM, 23-May-2006.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( ph  ->  F/_ x A )   =>    |-  ( ph  ->  F/ x [. A  /  x ]. ps )
 
Theoremnfsbc1 3046 Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   =>    |- 
 F/ x [. A  /  x ]. ph
 
Theoremnfsbc1v 3047* Bound-variable hypothesis builder for class substitution. (Contributed by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ x [. A  /  x ]. ph
 
Theoremnfsbcd 3048 Deduction version of nfsbc 3049. (Contributed by NM, 23-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x [. A  /  y ]. ps )
 
Theoremnfsbc 3049 Bound-variable hypothesis builder for class substitution. (Contributed by NM, 7-Sep-2014.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x [. A  /  y ]. ph
 
Theoremsbcco 3050* A composition law for class substitution. (Contributed by NM, 26-Sep-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  y ]. [. y  /  x ]. ph  <->  [. A  /  x ].
 ph )
 
Theoremsbcco2 3051* A composition law for class substitution. Importantly,  x may occur free in the class expression substituted for  A. (Contributed by NM, 5-Sep-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( x  =  y 
 ->  A  =  B )   =>    |-  ( [. x  /  y ]. [. B  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ph )
 
Theoremsbc5 3052* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Revised by Mario Carneiro, 12-Oct-2016.)
 |-  ( [. A  /  x ]. ph  <->  E. x ( x  =  A  /\  ph )
 )
 
Theoremsbc6g 3053* An equivalence for class substitution. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
 ) )
 
Theoremsbc6 3054* An equivalence for class substitution. (Contributed by NM, 23-Aug-1993.) (Proof shortened by Eric Schmidt, 17-Jan-2007.)
 |-  A  e.  _V   =>    |-  ( [. A  /  x ]. ph  <->  A. x ( x  =  A  ->  ph )
 )
 
Theoremsbc7 3055* An equivalence for class substitution in the spirit of df-clab 2216. Note that  x and  A don't have to be distinct. (Contributed by NM, 18-Nov-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( [. A  /  x ]. ph  <->  E. y ( y  =  A  /\  [. y  /  x ]. ph )
 )
 
Theoremcbvsbcw 3056* Version of cbvsbc 3057 with a disjoint variable condition. (Contributed by GG, 10-Jan-2024.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
Theoremcbvsbc 3057 Change bound variables in a wff substitution. (Contributed by Jeff Hankins, 19-Sep-2009.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
Theoremcbvsbcv 3058* Change the bound variable of a class substitution using implicit substitution. (Contributed by NM, 30-Sep-2008.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  y ]. ps )
 
Theoremsbciegft 3059* Conversion of implicit substitution to explicit class substitution, using a bound-variable hypothesis instead of distinct variables. (Closed theorem version of sbciegf 3060.) (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |-  ( ( A  e.  V  /\  F/ x ps  /\ 
 A. x ( x  =  A  ->  ( ph 
 <->  ps ) ) ) 
 ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbciegf 3060* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbcieg 3061* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 10-Nov-2005.)
 |-  ( x  =  A  ->  ( ph  <->  ps ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ps ) )
 
Theoremsbcie2g 3062* Conversion of implicit substitution to explicit class substitution. This version of sbcie 3063 avoids a disjointness condition on  x and  A by substituting twice. (Contributed by Mario Carneiro, 15-Oct-2016.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  (
 y  =  A  ->  ( ps  <->  ch ) )   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ch ) )
 
Theoremsbcie 3063* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 4-Sep-2004.)
 |-  A  e.  _V   &    |-  ( x  =  A  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. ph  <->  ps )
 
Theoremsbciedf 3064* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 29-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   &    |-  F/ x ph   &    |-  ( ph  ->  F/ x ch )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremsbcied 3065* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ( ph  /\  x  =  A ) 
 ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremsbcied2 3066* Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by NM, 13-Dec-2014.)
 |-  ( ph  ->  A  e.  V )   &    |-  ( ph  ->  A  =  B )   &    |-  (
 ( ph  /\  x  =  B )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <->  ch ) )
 
Theoremelrabsf 3067 Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2957 has implicit substitution). The hypothesis specifies that 
x must not be a free variable in  B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
 |-  F/_ x B   =>    |-  ( A  e.  { x  e.  B  |  ph
 } 
 <->  ( A  e.  B  /\  [. A  /  x ].
 ph ) )
 
Theoremeqsbc1 3068* Substitution for the left-hand side in an equality. Class version of eqsb1 2333. (Contributed by Andrew Salmon, 29-Jun-2011.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. x  =  B  <->  A  =  B ) )
 
Theoremsbcng 3069 Move negation in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ].  -.  ph  <->  -.  [. A  /  x ].
 ph ) )
 
Theoremsbcimg 3070 Distribution of class substitution over implication. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  ->  ps )  <->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) ) )
 
Theoremsbcan 3071 Distribution of class substitution over conjunction. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  x ]. ( ph  /\  ps ) 
 <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
 )
 
Theoremsbcang 3072 Distribution of class substitution over conjunction. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  /\  ps ) 
 <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps )
 ) )
 
Theoremsbcor 3073 Distribution of class substitution over disjunction. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) )
 
Theoremsbcorg 3074 Distribution of class substitution over disjunction. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  \/  ps )  <->  ( [. A  /  x ]. ph  \/  [. A  /  x ]. ps ) ) )
 
Theoremsbcbig 3075 Distribution of class substitution over biconditional. (Contributed by Raph Levien, 10-Apr-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  <->  ps )  <->  ( [. A  /  x ]. ph  <->  [. A  /  x ].
 ps ) ) )
 
Theoremsbcn1 3076 Move negation in and out of class substitution. One direction of sbcng 3069 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ].  -.  ph  ->  -.  [. A  /  x ].
 ph )
 
Theoremsbcim1 3077 Distribution of class substitution over implication. One direction of sbcimg 3070 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  ->  ps )  ->  ( [. A  /  x ]. ph  ->  [. A  /  x ]. ps ) )
 
Theoremsbcbi1 3078 Distribution of class substitution over biconditional. One direction of sbcbig 3075 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  <->  ps )  ->  ( [. A  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ps ) )
 
Theoremsbcbi2 3079 Substituting into equivalent wff's gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( [. A  /  x ].
 ph 
 <-> 
 [. A  /  x ].
 ps ) )
 
Theoremsbcal 3080* Move universal quantifier in and out of class substitution. (Contributed by NM, 31-Dec-2016.)
 |-  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph )
 
Theoremsbcalg 3081* Move universal quantifier in and out of class substitution. (Contributed by NM, 16-Jan-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  y ]. A. x ph  <->  A. x [. A  /  y ]. ph ) )
 
Theoremsbcex2 3082* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
 |-  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph )
 
Theoremsbcexg 3083* Move existential quantifier in and out of class substitution. (Contributed by NM, 21-May-2004.)
 |-  ( A  e.  V  ->  ( [. A  /  y ]. E. x ph  <->  E. x [. A  /  y ]. ph ) )
 
Theoremsbceqal 3084* A variation of extensionality for classes. (Contributed by Andrew Salmon, 28-Jun-2011.)
 |-  ( A  e.  V  ->  ( A. x ( x  =  A  ->  x  =  B )  ->  A  =  B )
 )
 
Theoremsbeqalb 3085* Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.)
 |-  ( A  e.  V  ->  ( ( A. x ( ph  <->  x  =  A )  /\  A. x (
 ph 
 <->  x  =  B ) )  ->  A  =  B ) )
 
Theoremsbcbid 3086 Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <-> 
 [. A  /  x ].
 ch ) )
 
Theoremsbcbidv 3087* Formula-building deduction for class substitution. (Contributed by NM, 29-Dec-2014.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps 
 <-> 
 [. A  /  x ].
 ch ) )
 
Theoremsbcbii 3088 Formula-building inference for class substitution. (Contributed by NM, 11-Nov-2005.)
 |-  ( ph  <->  ps )   =>    |-  ( [. A  /  x ]. ph  <->  [. A  /  x ].
 ps )
 
Theoremeqsbc2 3089* Substitution for the right-hand side in an equality. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by JJ, 7-Jul-2021.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. B  =  x  <->  B  =  A )
 )
 
Theoremsbc3an 3090 Distribution of class substitution over triple conjunction. (Contributed by NM, 14-Dec-2006.) (Revised by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. ( ph  /\  ps  /\ 
 ch )  <->  ( [. A  /  x ]. ph  /\  [. A  /  x ]. ps  /\  [. A  /  x ]. ch ) )
 
Theoremsbcel1v 3091* Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. A  /  x ]. x  e.  B  <->  A  e.  B )
 
Theoremsbcel2gv 3092* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |-  ( B  e.  V  ->  ( [. B  /  x ]. A  e.  x  <->  A  e.  B ) )
 
Theoremsbcel21v 3093* Class substitution into a membership relation. One direction of sbcel2gv 3092 that holds for proper classes. (Contributed by NM, 17-Aug-2018.)
 |-  ( [. B  /  x ]. A  e.  x  ->  A  e.  B )
 
Theoremsbcimdv 3094* Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1503). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 [. A  /  x ].
 ps  ->  [. A  /  x ].
 ch ) )
 
Theoremsbctt 3095 Substitution for a variable not free in a wff does not affect it. (Contributed by Mario Carneiro, 14-Oct-2016.)
 |-  ( ( A  e.  V  /\  F/ x ph )  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbcgf 3096 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 11-Oct-2004.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
 |- 
 F/ x ph   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbc19.21g 3097 Substitution for a variable not free in antecedent affects only the consequent. (Contributed by NM, 11-Oct-2004.)
 |- 
 F/ x ph   =>    |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ph  ->  ps )  <->  ( ph  ->  [. A  /  x ]. ps ) ) )
 
Theoremsbcg 3098* Substitution for a variable not occurring in a wff does not affect it. Distinct variable form of sbcgf 3096. (Contributed by Alan Sare, 10-Nov-2012.)
 |-  ( A  e.  V  ->  ( [. A  /  x ]. ph  <->  ph ) )
 
Theoremsbc2iegf 3099* Conversion of implicit substitution to explicit class substitution. (Contributed by Mario Carneiro, 19-Dec-2013.)
 |- 
 F/ x ps   &    |-  F/ y ps   &    |-  F/ x  B  e.  W   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( [. A  /  x ].
 [. B  /  y ]. ph  <->  ps ) )
 
Theoremsbc2ie 3100* Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008.) (Revised by Mario Carneiro, 19-Dec-2013.)
 |-  A  e.  _V   &    |-  B  e.  _V   &    |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph 
 <->  ps ) )   =>    |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >