HomeHome Intuitionistic Logic Explorer
Theorem List (p. 31 of 116)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3001-3100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-un 3001* Define the union of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with difference  ( A  \  B ) (df-dif 2999) and intersection  ( A  i^i  B ) (df-in 3003). (Contributed by NM, 23-Aug-1993.)
 |-  ( A  u.  B )  =  { x  |  ( x  e.  A  \/  x  e.  B ) }
 
Theoreminjust 3002* Soundness justification theorem for df-in 3003. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
 |- 
 { x  |  ( x  e.  A  /\  x  e.  B ) }  =  { y  |  ( y  e.  A  /\  y  e.  B ) }
 
Definitiondf-in 3003* Define the intersection of two classes. Definition 5.6 of [TakeutiZaring] p. 16. Contrast this operation with union  ( A  u.  B ) (df-un 3001) and difference  ( A  \  B ) (df-dif 2999). (Contributed by NM, 29-Apr-1994.)
 |-  ( A  i^i  B )  =  { x  |  ( x  e.  A  /\  x  e.  B ) }
 
Theoremdfin5 3004* Alternate definition for the intersection of two classes. (Contributed by NM, 6-Jul-2005.)
 |-  ( A  i^i  B )  =  { x  e.  A  |  x  e.  B }
 
Theoremdfdif2 3005* Alternate definition of class difference. (Contributed by NM, 25-Mar-2004.)
 |-  ( A  \  B )  =  { x  e.  A  |  -.  x  e.  B }
 
Theoremeldif 3006 Expansion of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
 |-  ( A  e.  ( B  \  C )  <->  ( A  e.  B  /\  -.  A  e.  C ) )
 
Theoremeldifd 3007 If a class is in one class and not another, it is also in their difference. One-way deduction form of eldif 3006. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  B )   &    |-  ( ph  ->  -.  A  e.  C )   =>    |-  ( ph  ->  A  e.  ( B  \  C ) )
 
Theoremeldifad 3008 If a class is in the difference of two classes, it is also in the minuend. One-way deduction form of eldif 3006. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  ( B  \  C ) )   =>    |-  ( ph  ->  A  e.  B )
 
Theoremeldifbd 3009 If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3006. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  e.  ( B  \  C ) )   =>    |-  ( ph  ->  -.  A  e.  C )
 
2.1.12  Subclasses and subsets
 
Definitiondf-ss 3010 Define the subclass relationship. Exercise 9 of [TakeutiZaring] p. 18. Note that  A  C_  A (proved in ssid 3042). For a more traditional definition, but requiring a dummy variable, see dfss2 3012. Other possible definitions are given by dfss3 3013, ssequn1 3168, ssequn2 3171, and sseqin2 3217. (Contributed by NM, 27-Apr-1994.)
 |-  ( A  C_  B  <->  ( A  i^i  B )  =  A )
 
Theoremdfss 3011 Variant of subclass definition df-ss 3010. (Contributed by NM, 3-Sep-2004.)
 |-  ( A  C_  B  <->  A  =  ( A  i^i  B ) )
 
Theoremdfss2 3012* Alternate definition of the subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Jan-2002.)
 |-  ( A  C_  B  <->  A. x ( x  e.  A  ->  x  e.  B ) )
 
Theoremdfss3 3013* Alternate definition of subclass relationship. (Contributed by NM, 14-Oct-1999.)
 |-  ( A  C_  B  <->  A. x  e.  A  x  e.  B )
 
Theoremdfss2f 3014 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 3-Jul-1994.) (Revised by Andrew Salmon, 27-Aug-2011.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B 
 <-> 
 A. x ( x  e.  A  ->  x  e.  B ) )
 
Theoremdfss3f 3015 Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  ( A  C_  B 
 <-> 
 A. x  e.  A  x  e.  B )
 
Theoremnfss 3016 If  x is not free in  A and  B, it is not free in  A  C_  B. (Contributed by NM, 27-Dec-1996.)
 |-  F/_ x A   &    |-  F/_ x B   =>    |-  F/ x  A  C_  B
 
Theoremssel 3017 Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
 
Theoremssel2 3018 Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
 |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
 
Theoremsseli 3019 Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.)
 |-  A  C_  B   =>    |-  ( C  e.  A  ->  C  e.  B )
 
Theoremsselii 3020 Membership inference from subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  A  C_  B   &    |-  C  e.  A   =>    |-  C  e.  B
 
Theoremsseldi 3021 Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014.)
 |-  A  C_  B   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  C  e.  B )
 
Theoremsseld 3022 Membership deduction from subclass relationship. (Contributed by NM, 15-Nov-1995.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( C  e.  A  ->  C  e.  B ) )
 
Theoremsselda 3023 Membership deduction from subclass relationship. (Contributed by NM, 26-Jun-2014.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ( ph  /\  C  e.  A )  ->  C  e.  B )
 
Theoremsseldd 3024 Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C  e.  A )   =>    |-  ( ph  ->  C  e.  B )
 
Theoremssneld 3025 If a class is not in another class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   =>    |-  ( ph  ->  ( -.  C  e.  B  ->  -.  C  e.  A ) )
 
Theoremssneldd 3026 If an element is not in a class, it is also not in a subclass of that class. Deduction form. (Contributed by David Moews, 1-May-2017.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  -.  C  e.  B )   =>    |-  ( ph  ->  -.  C  e.  A )
 
Theoremssriv 3027* Inference based on subclass definition. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  e.  A  ->  x  e.  B )   =>    |-  A  C_  B
 
Theoremssrd 3028 Deduction based on subclass definition. (Contributed by Thierry Arnoux, 8-Mar-2017.)
 |- 
 F/ x ph   &    |-  F/_ x A   &    |-  F/_ x B   &    |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremssrdv 3029* Deduction based on subclass definition. (Contributed by NM, 15-Nov-1995.)
 |-  ( ph  ->  ( x  e.  A  ->  x  e.  B ) )   =>    |-  ( ph  ->  A  C_  B )
 
Theoremsstr2 3030 Transitivity of subclasses. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( A  C_  B  ->  ( B  C_  C  ->  A  C_  C )
 )
 
Theoremsstr 3031 Transitivity of subclasses. Theorem 6 of [Suppes] p. 23. (Contributed by NM, 5-Sep-2003.)
 |-  ( ( A  C_  B  /\  B  C_  C )  ->  A  C_  C )
 
Theoremsstri 3032 Subclass transitivity inference. (Contributed by NM, 5-May-2000.)
 |-  A  C_  B   &    |-  B  C_  C   =>    |-  A  C_  C
 
Theoremsstrd 3033 Subclass transitivity deduction. (Contributed by NM, 2-Jun-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsyl5ss 3034 Subclass transitivity deduction. (Contributed by NM, 6-Feb-2014.)
 |-  A  C_  B   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsyl6ss 3035 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  ( ph  ->  A  C_  B )   &    |-  B  C_  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsylan9ss 3036 A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ps  ->  B 
 C_  C )   =>    |-  ( ( ph  /\ 
 ps )  ->  A  C_  C )
 
Theoremsylan9ssr 3037 A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ps  ->  B 
 C_  C )   =>    |-  ( ( ps 
 /\  ph )  ->  A  C_  C )
 
Theoremeqss 3038 The subclass relationship is antisymmetric. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 5-Aug-1993.)
 |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
 
Theoremeqssi 3039 Infer equality from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 9-Sep-1993.)
 |-  A  C_  B   &    |-  B  C_  A   =>    |-  A  =  B
 
Theoremeqssd 3040 Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B 
 C_  A )   =>    |-  ( ph  ->  A  =  B )
 
Theoremeqrd 3041 Deduce equality of classes from equivalence of membership. (Contributed by Thierry Arnoux, 21-Mar-2017.)
 |- 
 F/ x ph   &    |-  F/_ x A   &    |-  F/_ x B   &    |-  ( ph  ->  ( x  e.  A  <->  x  e.  B ) )   =>    |-  ( ph  ->  A  =  B )
 
Theoremssid 3042 Any class is a subclass of itself. Exercise 10 of [TakeutiZaring] p. 18. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
 |-  A  C_  A
 
Theoremssidd 3043 Weakening of ssid 3042. (Contributed by BJ, 1-Sep-2022.)
 |-  ( ph  ->  A  C_  A )
 
Theoremssv 3044 Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.)
 |-  A  C_  _V
 
Theoremsseq1 3045 Equality theorem for subclasses. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( A  =  B  ->  ( A  C_  C  <->  B 
 C_  C ) )
 
Theoremsseq2 3046 Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998.)
 |-  ( A  =  B  ->  ( C  C_  A  <->  C 
 C_  B ) )
 
Theoremsseq12 3047 Equality theorem for the subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  C_  C 
 <->  B  C_  D )
 )
 
Theoremsseq1i 3048 An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993.)
 |-  A  =  B   =>    |-  ( A  C_  C 
 <->  B  C_  C )
 
Theoremsseq2i 3049 An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993.)
 |-  A  =  B   =>    |-  ( C  C_  A 
 <->  C  C_  B )
 
Theoremsseq12i 3050 An equality inference for the subclass relationship. (Contributed by NM, 31-May-1999.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  =  B   &    |-  C  =  D   =>    |-  ( A  C_  C  <->  B 
 C_  D )
 
Theoremsseq1d 3051 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( A  C_  C  <->  B  C_  C ) )
 
Theoremsseq2d 3052 An equality deduction for the subclass relationship. (Contributed by NM, 14-Aug-1994.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  ( C  C_  A  <->  C  C_  B ) )
 
Theoremsseq12d 3053 An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  C  =  D )   =>    |-  ( ph  ->  ( A  C_  C  <->  B  C_  D ) )
 
Theoremeqsstri 3054 Substitution of equality into a subclass relationship. (Contributed by NM, 16-Jul-1995.)
 |-  A  =  B   &    |-  B  C_  C   =>    |-  A  C_  C
 
Theoremeqsstr3i 3055 Substitution of equality into a subclass relationship. (Contributed by NM, 19-Oct-1999.)
 |-  B  =  A   &    |-  B  C_  C   =>    |-  A  C_  C
 
Theoremsseqtri 3056 Substitution of equality into a subclass relationship. (Contributed by NM, 28-Jul-1995.)
 |-  A  C_  B   &    |-  B  =  C   =>    |-  A  C_  C
 
Theoremsseqtr4i 3057 Substitution of equality into a subclass relationship. (Contributed by NM, 4-Apr-1995.)
 |-  A  C_  B   &    |-  C  =  B   =>    |-  A  C_  C
 
Theoremeqsstrd 3058 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  =  B )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremeqsstr3d 3059 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  B  =  A )   &    |-  ( ph  ->  B 
 C_  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsseqtrd 3060 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  B  =  C )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theoremsseqtr4d 3061 Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C  =  B )   =>    |-  ( ph  ->  A 
 C_  C )
 
Theorem3sstr3i 3062 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  C_  B   &    |-  A  =  C   &    |-  B  =  D   =>    |-  C  C_  D
 
Theorem3sstr4i 3063 Substitution of equality in both sides of a subclass relationship. (Contributed by NM, 13-Jan-1996.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  A  C_  B   &    |-  C  =  A   &    |-  D  =  B   =>    |-  C  C_  D
 
Theorem3sstr3g 3064 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
 |-  ( ph  ->  A  C_  B )   &    |-  A  =  C   &    |-  B  =  D   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr4g 3065 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  ( ph  ->  A  C_  B )   &    |-  C  =  A   &    |-  D  =  B   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr3d 3066 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  A  =  C )   &    |-  ( ph  ->  B  =  D )   =>    |-  ( ph  ->  C  C_  D )
 
Theorem3sstr4d 3067 Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
 |-  ( ph  ->  A  C_  B )   &    |-  ( ph  ->  C  =  A )   &    |-  ( ph  ->  D  =  B )   =>    |-  ( ph  ->  C  C_  D )
 
Theoremsyl5eqss 3068 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  A  =  B   &    |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsyl5eqssr 3069 B chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  B  =  A   &    |-  ( ph  ->  B  C_  C )   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsyl6sseq 3070 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  B  =  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsyl6sseqr 3071 A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
 |-  ( ph  ->  A  C_  B )   &    |-  C  =  B   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsyl5sseq 3072 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  B  C_  A   &    |-  ( ph  ->  A  =  C )   =>    |-  ( ph  ->  B 
 C_  C )
 
Theoremsyl5sseqr 3073 Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
 |-  B  C_  A   &    |-  ( ph  ->  C  =  A )   =>    |-  ( ph  ->  B 
 C_  C )
 
Theoremsyl6eqss 3074 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  A  =  B )   &    |-  B  C_  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremsyl6eqssr 3075 A chained subclass and equality deduction. (Contributed by Mario Carneiro, 2-Jan-2017.)
 |-  ( ph  ->  B  =  A )   &    |-  B  C_  C   =>    |-  ( ph  ->  A  C_  C )
 
Theoremeqimss 3076 Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( A  =  B  ->  A  C_  B )
 
Theoremeqimss2 3077 Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
 |-  ( B  =  A  ->  A  C_  B )
 
Theoremeqimssi 3078 Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.)
 |-  A  =  B   =>    |-  A  C_  B
 
Theoremeqimss2i 3079 Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
 |-  A  =  B   =>    |-  B  C_  A
 
Theoremnssne1 3080 Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  B  /\  -.  A  C_  C )  ->  B  =/=  C )
 
Theoremnssne2 3081 Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
 |-  ( ( A  C_  C  /\  -.  B  C_  C )  ->  A  =/=  B )
 
Theoremnssr 3082* Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
 |-  ( E. x ( x  e.  A  /\  -.  x  e.  B ) 
 ->  -.  A  C_  B )
 
Theoremssralv 3083* Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
 |-  ( A  C_  B  ->  ( A. x  e.  B  ph  ->  A. x  e.  A  ph ) )
 
Theoremssrexv 3084* Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  ->  E. x  e.  B  ph ) )
 
Theoremralss 3085* Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( A. x  e.  A  ph  <->  A. x  e.  B  ( x  e.  A  -> 
 ph ) ) )
 
Theoremrexss 3086* Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
 |-  ( A  C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
 
Theoremss2ab 3087 Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
 |-  ( { x  |  ph
 }  C_  { x  |  ps }  <->  A. x ( ph  ->  ps ) )
 
Theoremabss 3088* Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  |  ph
 }  C_  A  <->  A. x ( ph  ->  x  e.  A ) )
 
Theoremssab 3089* Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x ( x  e.  A  ->  ph )
 )
 
Theoremssabral 3090* The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
 |-  ( A  C_  { x  |  ph }  <->  A. x  e.  A  ph )
 
Theoremss2abi 3091 Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
 |-  ( ph  ->  ps )   =>    |-  { x  |  ph }  C_  { x  |  ps }
 
Theoremss2abdv 3092* Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  |  ps }  C_ 
 { x  |  ch } )
 
Theoremabssdv 3093* Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  ( ps  ->  x  e.  A ) )   =>    |-  ( ph  ->  { x  |  ps }  C_  A )
 
Theoremabssi 3094* Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
 |-  ( ph  ->  x  e.  A )   =>    |- 
 { x  |  ph } 
 C_  A
 
Theoremss2rab 3095 Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
 |-  ( { x  e.  A  |  ph }  C_  { x  e.  A  |  ps }  <->  A. x  e.  A  ( ph  ->  ps )
 )
 
Theoremrabss 3096* Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
 |-  ( { x  e.  A  |  ph }  C_  B 
 <-> 
 A. x  e.  A  ( ph  ->  x  e.  B ) )
 
Theoremssrab 3097* Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
 |-  ( B  C_  { x  e.  A  |  ph }  <->  ( B  C_  A  /\  A. x  e.  B  ph ) )
 
Theoremssrabdv 3098* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
 |-  ( ph  ->  B  C_  A )   &    |-  ( ( ph  /\  x  e.  B ) 
 ->  ps )   =>    |-  ( ph  ->  B  C_ 
 { x  e.  A  |  ps } )
 
Theoremrabssdv 3099* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
 |-  ( ( ph  /\  x  e.  A  /\  ps )  ->  x  e.  B )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  B )
 
Theoremss2rabdv 3100* Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  { x  e.  A  |  ps }  C_  { x  e.  A  |  ch }
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11584
  Copyright terms: Public domain < Previous  Next >