ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo5 Unicode version

Theorem rmo5 2706
Description: Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
rmo5  |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph 
->  E! x  e.  A  ph ) )

Proof of Theorem rmo5
StepHypRef Expression
1 df-mo 2042 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  ( E. x ( x  e.  A  /\  ph )  ->  E! x ( x  e.  A  /\  ph ) ) )
2 df-rmo 2476 . 2  |-  ( E* x  e.  A  ph  <->  E* x ( x  e.  A  /\  ph )
)
3 df-rex 2474 . . 3  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
4 df-reu 2475 . . 3  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
53, 4imbi12i 239 . 2  |-  ( ( E. x  e.  A  ph 
->  E! x  e.  A  ph )  <->  ( E. x
( x  e.  A  /\  ph )  ->  E! x ( x  e.  A  /\  ph )
) )
61, 2, 53bitr4i 212 1  |-  ( E* x  e.  A  ph  <->  ( E. x  e.  A  ph 
->  E! x  e.  A  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105   E.wex 1503   E!weu 2038   E*wmo 2039    e. wcel 2160   E.wrex 2469   E!wreu 2470   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-mo 2042  df-rex 2474  df-reu 2475  df-rmo 2476
This theorem is referenced by:  nrexrmo  2707  cbvrmo  2717  bdrmo  15086
  Copyright terms: Public domain W3C validator