Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 15792
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1  |- BOUNDED  ph
Assertion
Ref Expression
bdrmo  |- BOUNDED  E* x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4  |- BOUNDED  ph
21ax-bdex 15755 . . 3  |- BOUNDED  E. x  e.  y 
ph
31bdreu 15791 . . 3  |- BOUNDED  E! x  e.  y 
ph
42, 3ax-bdim 15750 . 2  |- BOUNDED  ( E. x  e.  y  ph  ->  E! x  e.  y  ph )
5 rmo5 2726 . 2  |-  ( E* x  e.  y  ph  <->  ( E. x  e.  y 
ph  ->  E! x  e.  y  ph ) )
64, 5bd0r 15761 1  |- BOUNDED  E* x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2485   E!wreu 2486   E*wrmo 2487  BOUNDED wbd 15748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-bd0 15749  ax-bdim 15750  ax-bdan 15751  ax-bdal 15754  ax-bdex 15755  ax-bdeq 15756
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-cleq 2198  df-clel 2201  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator