Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 13698
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1  |- BOUNDED  ph
Assertion
Ref Expression
bdrmo  |- BOUNDED  E* x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4  |- BOUNDED  ph
21ax-bdex 13661 . . 3  |- BOUNDED  E. x  e.  y 
ph
31bdreu 13697 . . 3  |- BOUNDED  E! x  e.  y 
ph
42, 3ax-bdim 13656 . 2  |- BOUNDED  ( E. x  e.  y  ph  ->  E! x  e.  y  ph )
5 rmo5 2680 . 2  |-  ( E* x  e.  y  ph  <->  ( E. x  e.  y 
ph  ->  E! x  e.  y  ph ) )
64, 5bd0r 13667 1  |- BOUNDED  E* x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2444   E!wreu 2445   E*wrmo 2446  BOUNDED wbd 13654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13655  ax-bdim 13656  ax-bdan 13657  ax-bdal 13660  ax-bdex 13661  ax-bdeq 13662
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-cleq 2158  df-clel 2161  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator