Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 14148
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1  |- BOUNDED  ph
Assertion
Ref Expression
bdrmo  |- BOUNDED  E* x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4  |- BOUNDED  ph
21ax-bdex 14111 . . 3  |- BOUNDED  E. x  e.  y 
ph
31bdreu 14147 . . 3  |- BOUNDED  E! x  e.  y 
ph
42, 3ax-bdim 14106 . 2  |- BOUNDED  ( E. x  e.  y  ph  ->  E! x  e.  y  ph )
5 rmo5 2690 . 2  |-  ( E* x  e.  y  ph  <->  ( E. x  e.  y 
ph  ->  E! x  e.  y  ph ) )
64, 5bd0r 14117 1  |- BOUNDED  E* x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2454   E!wreu 2455   E*wrmo 2456  BOUNDED wbd 14104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157  ax-bd0 14105  ax-bdim 14106  ax-bdan 14107  ax-bdal 14110  ax-bdex 14111  ax-bdeq 14112
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-cleq 2168  df-clel 2171  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator