Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 16219
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1  |- BOUNDED  ph
Assertion
Ref Expression
bdrmo  |- BOUNDED  E* x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4  |- BOUNDED  ph
21ax-bdex 16182 . . 3  |- BOUNDED  E. x  e.  y 
ph
31bdreu 16218 . . 3  |- BOUNDED  E! x  e.  y 
ph
42, 3ax-bdim 16177 . 2  |- BOUNDED  ( E. x  e.  y  ph  ->  E! x  e.  y  ph )
5 rmo5 2752 . 2  |-  ( E* x  e.  y  ph  <->  ( E. x  e.  y 
ph  ->  E! x  e.  y  ph ) )
64, 5bd0r 16188 1  |- BOUNDED  E* x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2509   E!wreu 2510   E*wrmo 2511  BOUNDED wbd 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16176  ax-bdim 16177  ax-bdan 16178  ax-bdal 16181  ax-bdex 16182  ax-bdeq 16183
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-cleq 2222  df-clel 2225  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator