Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdrmo Unicode version

Theorem bdrmo 14961
Description: Boundedness of existential at-most-one. (Contributed by BJ, 16-Oct-2019.)
Hypothesis
Ref Expression
bdrmo.1  |- BOUNDED  ph
Assertion
Ref Expression
bdrmo  |- BOUNDED  E* x  e.  y 
ph
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem bdrmo
StepHypRef Expression
1 bdrmo.1 . . . 4  |- BOUNDED  ph
21ax-bdex 14924 . . 3  |- BOUNDED  E. x  e.  y 
ph
31bdreu 14960 . . 3  |- BOUNDED  E! x  e.  y 
ph
42, 3ax-bdim 14919 . 2  |- BOUNDED  ( E. x  e.  y  ph  ->  E! x  e.  y  ph )
5 rmo5 2703 . 2  |-  ( E* x  e.  y  ph  <->  ( E. x  e.  y 
ph  ->  E! x  e.  y  ph ) )
64, 5bd0r 14930 1  |- BOUNDED  E* x  e.  y 
ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2466   E!wreu 2467   E*wrmo 2468  BOUNDED wbd 14917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-bd0 14918  ax-bdim 14919  ax-bdan 14920  ax-bdal 14923  ax-bdex 14924  ax-bdeq 14925
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-cleq 2180  df-clel 2183  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator