ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurmo Unicode version

Theorem reurmo 2705
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 2703 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
21simprbi 275 1  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2469   E!wreu 2470   E*wrmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-rex 2474  df-reu 2475  df-rmo 2476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator