ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurmo Unicode version

Theorem reurmo 2702
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 2700 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
21simprbi 275 1  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2466   E!wreu 2467   E*wrmo 2468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-rex 2471  df-reu 2472  df-rmo 2473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator