ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reurmo Unicode version

Theorem reurmo 2725
Description: Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
Assertion
Ref Expression
reurmo  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )

Proof of Theorem reurmo
StepHypRef Expression
1 reu5 2723 . 2  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E* x  e.  A  ph ) )
21simprbi 275 1  |-  ( E! x  e.  A  ph  ->  E* x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   E.wrex 2485   E!wreu 2486   E*wrmo 2487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-rex 2490  df-reu 2491  df-rmo 2492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator